Search results for "PICO"

showing 10 items of 343 documents

Skin-remitted photon path lengths: experimental study

2020

Skin-remitted picosecond laser pulses were detected at four input-output fiber distances in the spectral range 560-800 nm. After deconvolution procedures, distributions and mean values of the remitted photon path lengths in forearm skin were analyzed.

PhotonMaterials sciencePicosecond laserintegumentary systembusiness.industryPhoton countingnervous system diseasesOpticsimmune system diseasesTemporal resolutionPath (graph theory)Forearm skinDiffuse reflectionDeconvolutionbusinessBiophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN)
researchProduct

Concentration depending fluorescence of 8-(di-(2-picolyl)) aminoBODIPY in solution

2014

[EN] An 8-dipicolylBODIPY derivative has been prepared and its photophysical properties evaluated under different conditions. Two different structures, hemicyanine and cyanine, are observed (depending on the solvent or the solution concentration). The hemicyanine form is not emissive whereas the cyanine form is fluorescent. This behavior is related with the planarity degree of the BODIPY core. The X-ray structure of the compound is reported and it shows that in solid state the hemicyanine form is present. The hemicyanine form seems to be stabilized by aggregation and is the main compound in concentrated solutions whereas the cyanine form is present in diluted solutions that are photochemica…

Photophysical stabilityOrganic ChemistrySolid-state8-DipicolylBODIPYCyanine formPhotochemistryBiochemistryFluorescencePlanarity testingSolventchemistry.chemical_compoundCocentration influencechemistryDrug DiscoveryBODIPYCyanineDerivative (chemistry)Hemicyanine form
researchProduct

Comments on the through space singlet energy transfers and energy migration (exciton) in the light harvesting systems

2008

Recent findings on the photophysical investigations of several cofacial bisporphyrin dyads for through space singlet and triplet energy transfers raised several serious questions about the mechanism of the energy transfers and energy migration in the light harvesting devices, notably LH II, in the heavily studied purple photosynthetic bacteria. The key issue is that for simple cofacial or slipped dyads with controlled geometry using rigid spacers or spacers with limited flexibilities, the fastest possible rates for singlet energy transfer for three examples are in the 10 x 10(9)s(-1) (i.e. just in the 100 ps time scale) for donor-acceptor distances approaching 3.5-3.6 A. The reported time s…

Photosynthetic reaction centreExcitonenergy migrationLight-Harvesting Protein Complexes010402 general chemistryPhotochemistry01 natural sciencesBiochemistryModels BiologicalInorganic ChemistryElectron transferchemistry.chemical_compoundBacterial Proteinslight harvesting systemsSinglet stateBacteriochlorophyllsComputingMilieux_MISCELLANEOUSexcitonenergy transferMolecular Structure010405 organic chemistryChemistrybacteriochlorophyllChromophore0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryRhodopseudomonasChemical physicsPicosecond[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryThermodynamicsPhotosynthetic bacteriaBacteriochlorophyllporphyrin
researchProduct

Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

2014

We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions. peerReviewed

Photosynthetic reaction centreMaterials scienceProtein ConformationPhysics::OpticsPhycobiliproteinsfrequency vibrational-modesRadiation DosageBiochemistryMolecular physicsArticlelaw.inventionProtein structureX-Ray Diffractionlawddc:570Scattering Small AngleMolecular Biologyta116Quantitative Biology::BiomoleculesScatteringLasersMolecular biophysicsFree-electron laserCell BiologyLaserstructural dynamicsEnergy TransferPicosecondBiophysicsUltrashort pulseBiotechnologyNature methods
researchProduct

The DEPFET based Focal Plane Detectors for MIXS on BepiColombo

2010

X-ray detectors based on arrays of DEPFET macropixels, which consist of a silicon drift detector combined with a detector/amplifier structure DEPFET as readout node, provide a convenient and flexible way to adapt the pixel size of a focal plane detector to the resolving power of any given X-ray optical system. Macropixels combine the traditional benefits of an SDD, like scalability, arbitrary geometry and excellent QE even in the low energy range, with the advantages of DEPFET structures: Charge storage capability, near Fano-limited energy resolution, low power consumption and high speed readout. Being part of the scientific payload of ESA's BepiColombo mission, the MIXS instrument will be …

PhysicsCMOS sensorMacropixelActive Pixel SensorSilicon drift detectorPhysics::Instrumentation and Detectorsbusiness.industryAmplifierBepiColomboDetectorX-ray detectorHigh voltagePlanetary XRFSettore ING-INF/01 - ElettronicaParticle detectorImagingOpticsCardinal pointIXOMIXSX-RaybusinessIXO; X-Ray; Planetary XRF; DEPFET; Macropixel; Active Pixel Sensor; Imaging; Spectroscopy; MIXS; BepiColomboDEPFETSpectroscopy
researchProduct

Quantum coherence and fast-gain effects in laser modelocking: The coherent master equation

2021

Modelocking embraces a variety of techniques leading to the periodic emission of ultrashort laser pulses, typically on the picosecond scale and below, whose impact in science and technology can be hardly exaggerated.

PhysicsComputer simulationbusiness.industryLaserPolarization (waves)law.inventionSemiconductor laser theoryOpticslawPicosecondMaster equationbusinessQuantumCoherence (physics)
researchProduct

Measurement and control of electron wave packets from a single-electron source

2015

We report an experimental technique to measure and manipulate the arrival-time and energy distributions of electrons emitted from a semiconductor electron pump, operated as both a single-electron source and a two-electron source. Using an energy-selective detector whose transmission we control on picosecond time scales, we can measure directly the electron arrival-time distribution and we determine the upper bound to the distribution width to be 30 ps. We study the effects of modifying the shape of the voltage wave form that drives the electron pump, and show that our results can be explained by a tunneling model of the emission mechanism. This information was in turn used to control the em…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsBand gapbusiness.industryWave packetDetectorEnergy-dispersive X-ray spectroscopyFOS: Physical sciencesElectronCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSemiconductorQuantum dotPicosecondMesoscale and Nanoscale Physics (cond-mat.mes-hall)7 Affordable and Clean EnergyAtomic physicsbusiness
researchProduct

Transverse nonlinear optics in heavy-metal-oxide glass

2008

6 pags. ; 9 figs.

PhysicsCondensed matter physicsmodulational instabilityComputer Science::Information RetrievalNonlinear opticsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)InstabilityAtomic and Molecular Physics and Opticsnonlinear glassemultiple filamentationFilamentationPicosecondspatial solitonself-focusingAbsorption (logic)Atomic physicsPhase conjugationSelf-phase modulationBeam (structure)
researchProduct

Tracking local magnetic dynamics via high-energy charge excitations in a relativistic Mott insulator

2016

We use time- and energy-resolved optical spectroscopy to investigate the coupling of electron-hole excitations to the magnetic environment in the relativistic Mott insulator Na$_2$IrO$_3$. We show that, on the picosecond timescale, the photoinjected electron-hole pairs delocalize on the hexagons of the Ir lattice via the formation of quasi-molecular orbital (QMO) excitations and the exchange of energy with the short-range-ordered zig-zag magnetic background. The possibility of mapping the magnetic dynamics, which is characterized by typical frequencies in the THz range, onto high-energy (1-2 eV) charge excitations provides a new platform to investigate, and possibly control, the dynamics of…

PhysicsElectronic Optical and Magnetic Materials; Condensed Matter PhysicsHigh energyCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Terahertz radiationMott insulatorFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsSettore FIS/03 - FISICA DELLA MATERIA01 natural sciences3. Good healthCondensed Matter - Strongly Correlated ElectronsZigzagPicosecondLattice (order)0103 physical sciencesElectronicddc:530Optical and Magnetic Materials010306 general physics0210 nano-technologySpectroscopy
researchProduct

Study of the Planacon XP85012 photomultiplier characteristics for its use in a Cherenkov detector

2016

Main properties of the multi-anode microchannel plate photomultiplier to be used in a Cherenkov detector are discussed. The laboratory test results obtained using irradiation of the MCP-PMT photocathode by picosecond optical laser pulses with different intensities (from single photon regime to the PMT saturation conditions) are presented. peerReviewed

PhysicsHistoryPhotomultiplierPhotonPhysics::Instrumentation and DetectorsCherenkov detectorbusiness.industryPhysics::Medical PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPhysics::OpticsLaserPhotocathodeComputer Science ApplicationsEducationlaw.inventionOpticslawPicosecondMicrochannel plate detectorIrradiationbusinessCherenkov detectorJournal of Physics: Conference Series
researchProduct