Search results for "PIERRE"
showing 10 items of 231 documents
"Vapautta, valistusta ja vastuuta" 1990-luvun nuorsuomalaiset - elämäntapa ja politiikka ja puolueen politiikan ulottuvuudet
2002
Stone lines and heaps on south-western Niger plateaus as remains of ancient agricultural land
2011
Les plateaux de la rive occidentale du fleuve Niger sont recouverts de lignes et de tas de pierres sèches alors que ces surfaces tabulaires sont aujourd'hui dépourvues de toutes cultures. Le sol du plateau est constitué d'un horizon argilo-sableux visible uniquement dans la zone où ces structures sont présentes. Elles témoigneraient d'un épierrage pour faciliter le travail agricole du sol. Les matériaux extraits ont été disposés en ligne puis en tas si la quantité de blocs était trop élevée. Ce parcellaire pourrait être contemporain de l'activité métallurgique située au pied des plateaux et datée de la deuxième moitié du premier millénaire.
Paris, capitale des bâtisseurs au Moyen Âge
1992
International audience
Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks
2021
The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from $10^{17}~$eV up to more than $10^{20}~$eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightfo…
Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory
2008
A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…
Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers
2016
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accura…
Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope
2020
Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to selec…
The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory
2021
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Be…
The Pierre Auger Observatory: latest results and future perspectives
2018
The Pierre Auger Observatory is the largest ultrahigh-energy cosmic ray observatory in the world. The huge amount of high quality data collected since 2004 up to now led to great improvements in our knowledge of the ultra-energetic cosmic rays. The suppression of the cosmic-ray flux at highest energies was clearly established, and the extra-galactic origin of these particles was confirmed. On the other hand, measurements of the depth of shower maximum indicate a puzzling trend in the mass composition of cosmic rays at energy around the ankle up to the highest energy. The just started upgrade of the Observatory, dubbed AugerPrime, will improve the identification of the mass of primaries allo…
FRAM—The Robotic Telescope for the Monitoring of the Wavelength Dependence of the Extinction: Description of Hardware, Data Analysis, and Results
2010
FRAM-F/(Ph)otometric Robotic Atmospheric Monitor is one of the atmospheric monitoring instruments at the Pierre Auger Observatory in Argentina. FRAM is an optical telescope equipped with CCD cameras and photometer, and it automatically observes a set of selected standard stars. Primarily, FRAM observations are used to obtain the wavelength dependence of the light extinction. FRAM telescope is also able to observe secondary astronomical targets, and namely the detection of optical counterparts of gamma-ray bursts has already proven to be successful. Finally, a wide-field CCD camera of FRAM can be used for rapid monitoring of atmospheric conditions along the track of particularly interesting …