Search results for "PKCS"

showing 4 items of 4 documents

Late activation of stress kinases (SAPK/JNK) by genotoxins requires the DNA repair proteins DNA-PKcs and CSB.

2005

Although genotoxic agents are powerful inducers of stress kinases (SAPK/JNK), the contribution of DNA damage itself to this response is unknown. Therefore, SAPK/JNK activation of cells harboring specific defects in DNA damage-recognition mechanisms was studied. Dual phosphorylation of SAPK/JNK by the genotoxin methyl methanesulfonate (MMS) occurred in two waves. The early response (≤2 h after exposure) was similar in cells knockout for ATM, PARP, p53, and CSB or defective in DNA-PKcscompared with wild-type cells. The late response however (≥4 h), was drastically reduced in DNA-PKcsand Cockayne's syndrome B (CSB)-deficient cells. Similar results were obtained with human cells lacking DNA-PKc…

DNA ReplicationAlkylationDNA RepairDNA damageDNA repairPoly ADP ribose polymeraseDNA-Activated Protein KinaseBiologyModels Biologicalchemistry.chemical_compoundMiceAnimalsHumansPhosphorylationPoly-ADP-Ribose Binding ProteinsMolecular BiologyDNA-PKcsCells CulturedKinaseDNA HelicasesJNK Mitogen-Activated Protein KinasesNuclear ProteinsCell BiologyBase excision repairDNAArticlesMethyl MethanesulfonateMolecular biologyMethyl methanesulfonateDNA-Binding ProteinsEnzyme Activationenzymes and coenzymes (carbohydrates)DNA Repair EnzymeschemistryPhosphorylationProtein Processing Post-TranslationalDNA DamageMutagensSignal TransductionMolecular biology of the cell
researchProduct

Molecular evolution of the metazoan protein kinase C multigene family

1996

Protein kinases C (PKCs) comprise closely related Ser/Thr kinases, ubiquitously present in animal tissues ; they respond to second messengers, e.g., Ca2+ and/or diacylglycerol, to express their activities. Two PKCs have been sequenced from Geodia cydonium, a member of the lowest multicellular animals, the sponges (Porifera). One sponge G. cydonium PKC, GCPKC1, belongs to the ''novel'' (Ca2+-independent) PKC (nPKC) subfamily while the second one, GCPKC2, has the hall-marks of the ''conventional'' (Ca2+-dependent) PKC (cPKC) subfamily. The alignment of the Ser/Thr catalytic kinase domains, of the predicted aa sequences for these cDNAs with respective segments from previously reported sequence…

SubfamilyMolecular Sequence DataProtein Serine-Threonine KinasesHomology (biology)CatalysisEvolution MolecularGeneticsAnimalssponges ; Geodia cydonium ; serine/threonine kinases ; phylogeny ; molecular systematics ; molecular evolutionAmino Acid SequenceMolecular BiologyEcology Evolution Behavior and SystematicsProtein kinase CPhylogenyProtein Kinase CGeneticsProtein-Serine-Threonine KinasesbiologyBase SequenceSequence Homology Amino AcidKinaseCyclin-dependent kinase 2PKCSCell biologyPoriferaenzymes and coenzymes (carbohydrates)Protein kinase domainMultigene Familybiology.proteinbiological phenomena cell phenomena and immunity
researchProduct

Protein kinase C controls activation of the DNA integrity checkpoint

2014

The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translatio…

Saccharomyces cerevisiae ProteinsCell cycle checkpointCell Cycle ProteinsProtein Serine-Threonine KinasesGenome Integrity Repair and ReplicationBiologyGeneticsHumansCHEK1Kinase activityCheckpoint Kinase 2Protein Kinase CProtein kinase CDNA-PKcsDNA integrity checkpointIntracellular Signaling Peptides and ProteinsG2-M DNA damage checkpointCell biologyCheckpoint Kinase 2Protein Kinase C-deltaBiochemistryMutationProtein Processing Post-TranslationalDNA DamageHeLa CellsMutagensNucleic Acids Research
researchProduct

Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment

2016

// Bregje van Oorschot 1 , Giovanna Granata 1 , Simone Di Franco 2 , Rosemarie ten Cate 1 , Hans M. Rodermond 1 , Matilde Todaro 3 , Jan Paul Medema 1 , Nicolaas A.P. Franken 1 1 Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, Cancer Genomics Center, Amsterdam, The Netherlands 2 Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy 3 Biomedical Department of Internal and Specialistic Medicine (DIBIMIS), University of Palermo, Palermo, Italy Correspondence to: Nicol…

double-strand break0301 basic medicineRadiation-Sensitizing AgentsPathologymedicine.medical_specialtyDNA End-Joining RepairRadiobiologyDNA repairDNA damageMorpholinesmedicine.medical_treatmentMice NudeUterine Cervical NeoplasmsDNA repairBreast NeoplasmsDNA-Activated Protein KinaseRadiation ToleranceMice03 medical and health sciences0302 clinical medicineCancer stem cellTumor Cells CulturedAnimalsHumansMedicineDNA Breaks Double-StrandedHomologous RecombinationDNA-PKcsdouble-strand breaksRadiotherapybusiness.industryCancerradiation oncologyHyperthermia Inducedhyperthermiamedicine.diseaseRadiation therapyradiation oncology.030104 developmental biologyOncologyChromones030220 oncology & carcinogenesisCancer cellNeoplastic Stem CellsCancer researchFemalebusinessResearch PaperDNA DamageOncotarget
researchProduct