Search results for "PLASMID"

showing 7 items of 327 documents

Cationic solid lipid nanoparticles complexed with genetic material for liver tumor treatment

2015

Concept Gene therapy is a growing field of medicine with great potential for the treatment of several diseases and it is based on the delivery of nucleic acids (DNA, RNA, etc.,) to specific cells. To achieve their therapeutic effects, the nucleic acids need to cross several biological barriers and be protected from the degradation by nucleases, present in biological fluids and intracellular compartments, to successfully gain access to their intracellular targets. To overcome these hurdles, it is necessary to deliver the genetic material with biocompatible carriers able to facilitate its translocation across the cell membranes and protect it from being degraded while circulating in the blood…

siRNADNA plasmidCATIONIC NANOPARTICLEScationic nanoparticles liver gene deliveryHEPATOCARCINOMAGENE DELIVERY
researchProduct

Double copies of blaKPC-3::Tn4401a on an IncX3 plasmid in Klebsiella pneumoniae successful clone ST512 from Italy

2015

ABSTRACT A carbapenem-resistant sequence type 512 (ST512) Klebsiella pneumoniae carbapenemase 3 (KPC-3)-producing K. pneumoniae strain showing a novel variant plasmid content was isolated in Palermo, Italy, in 2014. ST512 is a worldwide successful clone associated with the spread of bla KPC genes located on the IncFIIk pKpQIL plasmid. In our ST512 strain, the bla KPC-3 gene was unusually located on an IncX3 plasmid, whose complete sequence was determined. Two copies of bla KPC-3 ::Tn 4401a caused by intramolecular transposition events were detected in the plasmid.

transposonsequence analysispolymerase chain reactionDrug ResistanceGene DosageSettore MED/42 - Igiene Generale E Applicatabacterial proteinbeta-Lactamaseopen reading framecarbapenemasePlasmidminocyclineplasmid DNAmeropenemPharmacology (medical)geneticscolistincefpodoximeceftazidime610 Medicine & healthCarbapenemBacterialpolymyxin Btimentingene expression regulationbacteriumKlebsiella pneumoniae carbapenemase 3 producing Klebsiella pneumoniae3. Good healthantiinfective agentmicrobial sensitivity testKlebsiella pneumoniaeItalypriority journaltigecyclineMultipleclone (Java method)cefotaxime030106 microbiologyKlebsiella pneumoniae carbapenemase 3tobramycinMicrobial Sensitivity Testsgentamicinpiperacillin plus tazobactamchemistryGene dosageArticleMicrobiology03 medical and health sciencesComplete sequenceClone CellOpen Reading FramesertapenemBacterial Proteinsmultidrug resistanceextensively drug resistant bacteriumAnti-Bacterial AgentcefepimePharmacologylevofloxacinmicrobiologycefoxitinbiochemical phenomena metabolism and nutritionbacterial infections and mycosesVirologyAnti-Bacterial Agents; Bacterial Proteins; Carbapenems; Clone Cells; Drug Resistance Multiple Bacterial; Gene Dosage; Italy; Klebsiella Infections; Klebsiella pneumoniae; Microbial Sensitivity Tests; Open Reading Frames; Plasmids; beta-Lactamases; DNA Transposable Elements; Gene Expression Regulation Bacterial; Pharmacology (medical); Pharmacology; Infectious Diseasesantibiotic sensitivityClone CellsKlebsiella InfectionsceftriaxoneCarbapenemsbacterial genetics0301 basic medicinemolecular cloningSettore MED/07 - Microbiologia E Microbiologia ClinicaKlebsiella pneumoniaeTransposition (music)Drug Resistance Multiple Bacterialpolycyclic compoundsgenetic screeningcell clonecarbapenem derivativeKlebsiella infectionunclassified drugAnti-Bacterial AgentsInfectious Diseasesbacterial genePlasmidsenzymologydoripenemBiologyminimum inhibitory concentrationbeta-Lactamasesbeta lactamaseMechanisms of ResistanceciprofloxacinAmikacin; aztreonam; carbapenemase; cefepime; cefotaxime; cefoxitin; cefpodoxime; ceftazidime; ceftriaxone; ciprofloxacin; colistin; cotrimoxazole; doripenem; doxycycline; ertapenem; gentamicin; imipenem; Klebsiella pneumoniae carbapenemase 3; levofloxacin; meropenem; minocycline; piperacillin plus tazobactam; plasmid DNA; polymyxin B; tigecycline; timentin; tobramycin; unclassified drug; antiinfective agent; bacterial protein; beta lactamase; carbapenem derivative; transposon antibiotic sensitivity; Article; bacterial gene; bacterial genetics; bacterial strain; bacterium; bacterium detection; bacterium isolation; Escherichia coli; extensively drug resistant bacterium; gene dosage; genetic screening; Italy; Klebsiella pneumoniae; Klebsiella pneumoniae carbapenemase 3 producing Klebsiella pneumoniae; minimum inhibitory concentration; molecular cloning; nonhuman; polymerase chain reaction; priority journal; sequence analysis; cell clone; chemistry; drug effects; enzymology; gene expression regulation; genetics; isolation and purification; Klebsiella infection; Klebsiella pneumoniae; metabolism; microbial sensitivity test; microbiology; multidrug resistance; open reading frame; plasmid; transposon Anti-Bacterial Agents; Bacterial Proteins; beta-Lactamases; Carbapenems; Clone Cells; DNA Transposable Elements; Drug Resistance Multiple Bacterial; Gene Dosage; Gene Expression Regulation Bacterial; Italy; Klebsiella Infections; Klebsiella pneumoniae; Microbial Sensitivity Tests; Open Reading Frames; Plasmidsplasmidbacterium isolationEscherichia coliGeneAmikacinbacterium detectionnonhumandoxycyclineisolation and purificationGene Expression Regulation Bacterialbiology.organism_classificationbacterial straincotrimoxazoleOpen reading frameDNA Transposable Elementdrug effectsDNA Transposable Elementsmetabolismaztreonamimipenem
researchProduct

Black Queen Evolution and Trophic Interactions Determine Plasmid Survival after the Disruption of the Conjugation Network

2018

Bacterial antibiotic resistance is often a part of mobile genetic elements that move from one bacterium to another. By interfering with the horizontal movement and the maintenance of these elements, it is possible to remove the resistance from the population. Here, we show that a so-called plasmid-dependent bacteriophage causes the initially resistant bacterial population to become susceptible to antibiotics. However, this effect is efficiently countered when the system also contains a predator that feeds on bacteria. Moreover, when the environment contains antibiotics, the survival of resistance is dependent on the resistance mechanism. When bacteria can help their contemporaries to degrad…

trophic levelsantibiotic resistanceevoluutiospreadEcological and Evolutionary Sciencedependent phagesEditor's PickMicrobiologyQR1-502saalistusbakteeritstrainsplasmiditprotozoacoevolutionpredationhorisontaalinen geeninsiirtobacteria1183 Plant biology microbiology virologyBlack Queen evolutionResearch Articleantibioottiresistenssiconjugation
researchProduct

Transfection of lipoma cells with papilloma bovine virus subgenomic fragment.

1991

Abstract Lipoma cells with consistent chromosomal aberration have been transfected with plasmids carrying papilloma bovine virus subgenomic fragment (PBV 69). The succesful transformation of the cells was ascerted on the changed growth pattern of the cells in liquid medium, colony formation in soft agar and modified cell appearrance in electron microscopy; transfection with PBV 69 has not been, however, sufficient to immortalize lipoma cells.

virusesCellEndoplasmic ReticulumTransfectionVirusPlasmidotorhinolaryngologic diseasesmedicineTumor Cells CulturedHumansBovine papillomavirusSubgenomic mRNABovine papillomavirus 1Cell Line TransformedChromosome AberrationsbiologyMusclesCell DifferentiationCell BiologyTransfectionFibroblastsbiology.organism_classificationmedicine.diseaseCell Transformation ViralVirologyClone CellsMicroscopy Electronmedicine.anatomical_structureAdipose TissueCell culturePapillomaLipomaCell DivisionCell biology international reports
researchProduct

Generation and Applications of HPV Pseudovirions Using Vaccinia Virus

2005

This chapter outlines the generation and application of human papillomavirus type 33 (HPV 33) pseudovirions. These pseudovirions are structurally indistinguishable from native virions and are therefore valuable tools for the study of papillomavirus/cell interactions. The method describes (1) the construction of vaccinia viruses recombinant for the major and minor HPV capsid proteins, L1 and L2, respectively, (2) the transfection of Cos7 cells with a marker plasmid replicating to high copy numbers, (3) the expression of L1 and L2 using the vaccinia virus expression system, (4) the extraction, purification, and analysis of HPV-33 pseudovirions, (5) pseudoinfection assays, (6) pre- and post-at…

virusesCellvirus diseasesTransfectionBiologyVirologyNeutralizationViruslaw.inventionchemistry.chemical_compoundPlasmidmedicine.anatomical_structurechemistryCapsidlawRecombinant DNAmedicineVaccinia
researchProduct

Generation and neutralization of pseudovirions of human papillomavirus type 33

1997

Since human papillomaviruses (HPV) cannot be propagated in cell culture, the generation of infectious virions in vitro is a highly desirable goal. Here we report that pseudovirions can be generated by the assembly of virus-like particles (VLPs) in COS-7 cells containing multiple copies of a marker plasmid. Using recombinant vaccinia viruses, we have obtained spherical VLPs of HPV type 33 (HPV-33) which fractionate into heavy and light VLPs in cesium chloride density gradients. VLPs in the heavy fraction (1.31 g/cm3) carry the plasmid in DNase-resistant form and are capable of transferring the genetic marker located on the plasmid to COS-7 cells in a DNase-resistant way (pseudoinfection). Th…

virusesImmunologyBiologyAntibodies Viralcomplex mixturesMicrobiologyNeutralizationlaw.inventionchemistry.chemical_compoundCapsidPlasmidNeutralization TestslawVirologyAnimalsDeoxyribonuclease IHumansAntigens ViralPapillomaviridaeAntiserumVirus AssemblyVirionvirus diseasesOncogene Proteins ViralVirologyMolecular biologyIn vitroTiterchemistryCapsidInsect ScienceCOS CellsDNA ViralRecombinant DNACapsid ProteinsDNAResearch ArticleJournal of Virology
researchProduct

Pseudovirions as Specific Tools for Investigation of Virus Interactions With Cells

2004

This chapter outlines the generation and application of human papillomavirus type 33 (HPV33) pseudovirions. The method describes (1) the construction of vaccinia viruses recombinant for the major and minor HPV capsid proteins, L1 and L2, respectively; (2) the transfection of Cos7 cells with a marker plasmid replicating to high copy numbers; (3) the expression of L1 and L2 using the vaccinia virus expression system; (4) the extraction, purification, and analysis of HPV33 pseudovirions; and (5) their use in pseudoinfection assays. These pseudovirions are structurally indistinguishable from native virions and are therefore valuable tools for the study of papillomavirus-cell interactions. The m…

virusesTransfectionBiologyVirologyViruslaw.inventionchemistry.chemical_compoundPlasmidchemistryCapsidlawRecombinant DNAVacciniaVaccinia virusesDNA
researchProduct