Search results for "PLASMONIC NANOPARTICLE"
showing 6 items of 16 documents
Light trapping by plasmonic nanoparticles
2020
Abstract Metallic nanoparticles sustaining localized surface plasmon resonances are of great interest for enhancing light trapping in thin film photovoltaics. In this chapter, we explore the correlation between the structural and optical properties of self-assembled silver nanostructures fabricated by a solid-state dewetting process on various substrates relevant for silicon photovoltaics and later integrated into plasmonic back reflectors. Our study allows us to optimize the performance of nanostructures by identifying the fabrication conditions in which desirable circular and uniformly spaced nanoparticles are obtained. Second, we introduce a novel optoelectronic spectroscopic method that…
Au-ZnO Nanocomposite Films for Plasmonic Photocatalysis
2015
Nanocomposites based on plasmonic nanoparticles and metal-oxide semiconductors are emerging as promising materials for conversion of solar energy into chemical energy. In this work, a Au–ZnO nanocomposite film with notably enhanced photocatalytic activity is successfully prepared by a single-step process. Both ZnO and Au nanoparticles are synthesized in situ during baking of the film spin-coated from a solution of Zn(CH3COO)2 and HAuCl4. Furthermore, it is shown that this precursor solution can be formulated as a nanoink for the generation of micropatterns by microplotter printing, opening the way for the miniaturization of devices with enhanced properties for photocatalysis, optoelectronic…
Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles
2012
The ultimate detection limit in analytic chemistry and biology is the single molecule. Commonly, fluorescent dye labels or enzymatic amplification are employed. This requires additional labeling of the analyte, which modifies the species under investigation and therefore influences biological processes. Here, we utilize single gold nanoparticles to detect single unlabeled proteins with extremely high temporal resolution. This allows for monitoring the dynamic evolution of a single protein binding event on a millisecond time scale. The technique even resolves equilibrium coverage fluctuations, opening a window into Brownian dynamics of unlabeled macromolecules. Therefore, our method enables …
Protein-membrane interaction probed by single plasmonic nanoparticles.
2008
We present a nanosized and addressable sensor platform based on membrane coated plasmonic particles and show unequivocally the covering with lipid bilayers as well as the subsequent detection of streptavidin binding to biotinylated lipids. The binding is detected on membrane covered gold nanorods by monitoring the spectral shift by fast single particle spectroscopy (fastSPS) on many particles in parallel. Our approach allows for local analysis of protein interaction with biological membranes as a function of the lateral composition of phase separated membranes.
Coupling colloidal chemistry with coordination chemistry: Design of hybrid nanomaterials by the assembly of plasmonic nanoparticles and functional co…
2021
Nanotechnology involves the design, characterization, production and application of structures, devices and systems by the control of the shape and size at the nanometer scale involving different fields. In the last decade, nanotechnology development has boosted the interest in hybrid nanomaterials. These materials are a complimenting combination of two (or more) nanoparticles (NPs) with enhanced performance characteristics that offer exciting opportunities. It allows the possibility of integrating materials with different physical and chemical properties to widen the range of practical applications. In this context, Au NPs have recently attracted a lot of attention due to the great opportu…
Synergistic enhancement via plasmonic nanoplate-bacteria-nanorod supercrystals for highly efficient SERS sensing of food-borne bacteria
2017
Bio-sensing techniques utilizing metallic nanoparticles as a probe have gained more and more attention and play today an important role in the detection of bacteria. To date, although several sensing materials have been tested, there is still a long way to go to achieve a fast, low-cost, ultrasensitive and multifunctional substrate suitable for a universal biosensor for detection of bacterial cells. Here, we report a novel probe design based on anisotropic plasmonic nanoparticles organized to a biocompatible 3D bio-inorganic scaffold, i.e., nanoplate-bacteria-nanorod supercrystals (NBNS) with extremely high surface-enhanced Raman spectroscopic (SERS) activity as a model of synergistic plasm…