Search results for "PLASTICITY"

showing 10 items of 765 documents

Modulation of information processing by AMPA receptor auxiliary subunits

2020

AMPA-type glutamate receptors (AMPARs) are key molecules of neuronal communication in our brain. The discovery of AMPAR auxiliary subunits, such as proteins of the TARP, CKAMP and CNIH families, fundamentally changed our understanding of how AMPAR function is regulated. Auxiliary subunits control almost all aspects of AMPAR function in the brain. They influence AMPAR assembly, composition, structure, trafficking, subcellular localization and gating. This influence has important implications for synapse function. In the present review, we first discuss how auxiliary subunits affect the strength of synapses by modulating number and localization of AMPARs in synapses as well as their glutamate…

0301 basic medicinePhysiology610 MedizinGlutamic AcidGatingAMPA receptorSynaptic TransmissionSynapse03 medical and health sciences0302 clinical medicineHomeostatic plasticity610 Medical sciencesHumansReceptors AMPAReceptorNeuronsNeuronal PlasticityChemistrymusculoskeletal neural and ocular physiologyGlutamate receptor030104 developmental biologyHebbian theorynervous systemSynapsesSynaptic plasticityNeuroscience030217 neurology & neurosurgery
researchProduct

Developmental programming of somatic growth, behavior and endocannabinoid metabolism by variation of early postnatal nutrition in a cross-fostering m…

2017

Background Nutrient deprivation during early development has been associated with the predisposition to metabolic disorders in adulthood. Considering its interaction with metabolism, appetite and behavior, the endocannabinoid (eCB) system represents a promising target of developmental programming. Methods By cross-fostering and variation of litter size, early postnatal nutrition of CB6F1-hybrid mice was controlled during the lactation period (3, 6, or 10 pups/mother). After weaning and redistribution at P21, all pups received standard chow ad libitum. Gene expression analyses (liver, visceral fat, hypothalamus) were performed at P50, eCB concentrations were determined in liver and visceral …

0301 basic medicinePhysiologyGene Expressionlcsh:MedicineAdipose tissueBiochemistryFatsMiceOvernutritionArcuate NucleusPregnancyLactationMedicine and Health SciencesCross-fosteringInsulin-Like Growth Factor Ilcsh:Sciencemedia_commonMultidisciplinaryAnimal BehaviorBrainNeurochemistryLipidsmedicine.anatomical_structureAdipose TissuePhysiological ParametersLiverAnimal SocialityFemaleAnatomyNeurochemicalsResearch Articlemedicine.medical_specialtymedia_common.quotation_subjectHypothalamusNutritional StatusIntra-Abdominal FatBiology03 medical and health sciencesInternal medicineGeneticsmedicineAnimalsHumansWeaningObesityNutritionBehaviorBody Weightlcsh:RBiology and Life SciencesAppetitemedicine.diseaseObesityDisease Models AnimalBiological Tissue030104 developmental biologyEndocrinologyDevelopmental plasticitylcsh:QZoologyBody mass indexEndocannabinoidsNeurosciencePLOS ONE
researchProduct

Life history adjustments to intestinal inflammation in a gut nematode.

2017

ABSTRACT Many parasitic nematodes establish chronic infections. This implies a finely tuned interaction with the host immune response in order to avoid infection clearance. Although a number of immune interference mechanisms have been described in nematodes, how parasites adapt to the immune environment provided by their hosts remains largely unexplored. Here, we used the gastrointestinal nematode Heligmosomoides polygyrus to investigate the plasticity of life history traits and immunomodulatory mechanisms in response to intestinal inflammation. We adopted an experimental model of induced colitis and exposed worms to intestinal inflammation at two different developmental stages (larvae and …

0301 basic medicinePhysiologyPhenotypic plasticityAquatic ScienceHost-Parasite InteractionsImmunomodulation03 medical and health sciencesMice0302 clinical medicineImmune systemparasitic diseases[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/Symbiosismedicine[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyAnimalsColitisAdaptationIntestinal Diseases ParasiticMolecular BiologyLife History TraitsEcology Evolution Behavior and SystematicsStrongylida InfectionsInfectivityInflammationStrongyloideaPhenotypic plasticityMice Inbred BALB CbiologyHost (biology)Dextran SulfateInflammatory responseHelminth Proteinsmedicine.diseasebiology.organism_classification3. Good healthIntestinesDisease Models Animal030104 developmental biologyNematodeInfectivityInsect ScienceLarvaImmunology[SDV.IMM]Life Sciences [q-bio]/ImmunologyAnimal Science and ZoologyHeligmosomoides polygyrusAdaptation030215 immunology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisThe Journal of experimental biology
researchProduct

PTEN recruitment controls synaptic and cognitive function in Alzheimer's models

2016

Dyshomeostasis of amyloid-β peptide (Aβ) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aβ appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aβ-induced depression. Mechanistically, Aβ triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN kno…

0301 basic medicinePrimary Cell CulturePDZ DomainsMice TransgenicMolecular neuroscienceBiologyNeurotransmissionSynaptic TransmissionMice03 medical and health sciences0302 clinical medicineAlzheimer DiseasePostsynaptic potentialmedicineAnimalsPTENGene Knock-In TechniquesAmyloid beta-PeptidesGeneral NeurosciencePTEN PhosphohydrolaseLong-term potentiationmedicine.diseaseRatsDisease Models Animal030104 developmental biologySynaptic fatigueSynaptic plasticitybiology.proteinAlzheimer's diseaseCognition DisordersNeuroscience030217 neurology & neurosurgeryNature Neuroscience
researchProduct

2019

Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burs…

0301 basic medicineProtein degradationNeuroprotectionCatalysisInorganic Chemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCa2+/calmodulin-dependent protein kinaseMG132medicinePhysical and Theoretical ChemistryMolecular BiologySpectroscopybusiness.industryOrganic ChemistryLong-term potentiationGeneral MedicineComputer Science Applications030104 developmental biologychemistrySynaptic plasticityProteasome inhibitorMemory consolidationbusinessNeuroscience030217 neurology & neurosurgerymedicine.drugInternational Journal of Molecular Sciences
researchProduct

Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients

2019

Abstract Background Alterations in the structure and physiology of interneurons in the prefrontal cortex (PFC) are important factors in the etiopathology of different psychiatric disorders. Among the interneuronal subpopulations, parvalbumin (PV) expressing cells appear to be specially affected. Interestingly, during development and adulthood the connectivity of these interneurons is regulated by the presence of perineuronal nets (PNNs), specialized regions of the extracellular matrix, which are frequently surrounding PV expressing neurons. Previous reports have found anomalies in the density of PNNs in the PFC of schizophrenic patients. However, although some studies have described alterat…

0301 basic medicinePsychosisBipolar disorderPerineuronal netsPrefrontal cortexlcsh:RC321-57103 medical and health sciences0302 clinical medicinemental disordersNeuroplasticitymedicineMajor depressionPsiquiatriaBipolar disorderPrefrontal cortexlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySalut mentalBiological PsychiatryParvalbuminbiologyResearchPerineuronal netlcsh:QP351-495medicine.diseaseDorsolateral prefrontal cortexPsychiatry and Mental healthlcsh:Neurophysiology and neuropsychology030104 developmental biologymedicine.anatomical_structurenervous systemSchizophreniaSchizophreniabiology.proteinEsquizofrèniaNeuroscience030217 neurology & neurosurgeryParvalbuminInternational Journal of Bipolar Disorders
researchProduct

Neuroprotective effects of physical activity via the adaptation of astrocytes

2021

The multifold benefits of regular physical exercise have been largely demonstrated in human and animal models. Several studies have reported the beneficial effects of physical activity, both in peripheral tissues and in the central nervous system (CNS). Regular exercise improves cognition, brain plasticity, neurogenesis and reduces the symptoms of neurodegenerative diseases, making timeless the principle of “mens sana in corpore sano” (i.e., a healthy mind in a healthy body). Physical exercise promotes morphological and functional changes in the brain, acting not only in neurons but also in astrocytes, which represent the most numerous glial cells in the brain. The multiple effects of exerc…

0301 basic medicineQH301-705.5NeurogenesisCentral nervous systemPhysical exerciseReviewNeuroprotection03 medical and health sciences0302 clinical medicinePhysical Conditioning AnimalNeuroplasticityMedicineAnimalsHumansBiology (General)ExerciseNeuronsNeuronal Plasticitybusiness.industryNeurogenesisBrainGeneral MedicineNeuronAdaptation PhysiologicalBrain functions030104 developmental biologymedicine.anatomical_structureAstrocytesCatecholamineNeuronbusinessNeuroscience030217 neurology & neurosurgeryAstrocytemedicine.drug
researchProduct

Epigenetic Control of Phenotypic Plasticity in the Filamentous Fungus Neurospora crassa

2016

Abstract Phenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is a ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood in most organisms. While modifications to DNA and histone proteins have been implicated as likely candidates for generating and regulating phenotypic plasticity, specific details of each modification and its mode of operation have remained largely unknown. In this study, we investigated how e…

0301 basic medicineRNA-interferenssiGenotypeInvestigationsQH426-470MethylationModels BiologicalHistone methylationEpigenesis GeneticNeurospora crassaHistonesGene Knockout Techniques03 medical and health sciencesRNA interferenceHistone demethylationGene Expression Regulation FungalHistone methylationGeneticshistone deacetylationEpigeneticshistone methylationGenetikMolecular BiologyGeneCrosses GeneticGenetic Association StudiesGenetics (clinical)Histone deacetylationGeneticsAnalysis of VariancePhenotypic plasticityModels StatisticalDNA methylationNeurospora crassabiologyAcetylationbiology.organism_classificationDNA-metylaatioPhenotype030104 developmental biologyHistonereaction normMutationDNA methylationbiology.proteinta1181fungisienetAlgorithmsG3: Genes, Genomes, Genetics
researchProduct

Contrasting coping styles meet the wall: A dopamine driven dichotomy in behavior and cognition

2017

Individual variation in the ability to modify previously learned behaviour is an important dimension of trait correlations referred to as coping styles, behavioral syndromes or personality. These trait clusters have been shaped by natural selection, and underlying control mechanisms are often conserved throughout vertebrate evolution. In teleost fishes, behavioral flexibility and coping style have been studied in the high (HR) and low-responsive (LR) rainbow trout lines. Generally, proactive LR trout show a behaviour guided by previously learned routines, while HR trout show a more flexible behaviour relying on environmental cues. In mammals, routine dependent vs flexible behavior has been …

0301 basic medicineSTRESSNEUROSCIENCESTELEOST FISHESFLEXIBILITYRAINBOW-TROUTINDIVIDUAL VARIATIONteleostsAmygdalacognitive flexibilitylcsh:RC321-571Developmental psychology03 medical and health sciencesBehavioral syndrome0302 clinical medicineLimbic systemmonoamineslimbic systembiology.animalNeuroplasticitymedicine14. Life underwaterlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchbiologyDANIO-RERIOGeneral NeuroscienceCognitive flexibilityVertebrateNEURAL PLASTICITYbiology.organism_classificationRECEPTORSAMYGDALATrout030104 developmental biologymedicine.anatomical_structurepersonalityANIMAL PERSONALITIESRainbow troutNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

Homer2 and alcohol: A mutual interaction

2017

The past two decades of data derived from addicted individuals and preclinical animal models of addiction implicate a role for the excitatory glutamatergic transmission within the mesolimbic structures in alcoholism. The cellular localization of the glutamatergic receptor subtypes, as well as their signaling efficiency and function, are highly dependent upon discrete functional constituents of the postsynaptic density, including the Homer family of scaffolding proteins. The consequences of repeated alcohol administration on the expression of the Homer family proteins demonstrate a crucial and active role, particularly for the expression of Homer2 isoform, in regulating alcohol-induced behav…

0301 basic medicineScaffold proteinlcsh:RC435-571media_common.quotation_subjectMini ReviewAddiction; Alcohol; Glutamate; Homer proteins; Homer2; Psychiatry and Mental HealthglutamateBiologyNucleus accumbensHomer203 medical and health sciencesGlutamatergic0302 clinical medicineExtended amygdalalcsh:PsychiatryNeuroplasticityCellular localizationmedia_commonPsychiatryHomer proteinalcoholAddictionHomer proteins030104 developmental biologyPsychiatry and Mental HealthaddictionNeurosciencePostsynaptic density030217 neurology & neurosurgery
researchProduct