Search results for "PMML"

showing 4 items of 4 documents

Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing

2018

International audience; Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This article presents an extension to the predictive model markup language (PMML) standard for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on extensible markup language (XML) and used for the representation of analytical models…

0209 industrial biotechnologyDesignComputer sciencecomputer.internet_protocol02 engineering and technologycomputer.software_genreBayesian inferenceIndustrial and Manufacturing EngineeringArticle[SPI]Engineering Sciences [physics]020901 industrial engineering & automationPMML0202 electrical engineering electronic engineering information engineeringanalyticsUncertainty quantificationMonte-Carlouncertaintycomputer.programming_languageParsingBayesian networkInformationSystems_DATABASEMANAGEMENTstandardPython (programming language)XMLComputer Science ApplicationsmanufacturingComputingMethodologies_PATTERNRECOGNITIONBayesian networksControl and Systems EngineeringSurface-RoughnessData analysisPredictive Model Markup Language020201 artificial intelligence & image processingData miningcomputerXML
researchProduct

Bridging data mining and semantic web

2016

Nowadays Semantic Web is widely adopted standard of knowledge representation. Hence, knowledge engineers are applying sophisticated methods to capture, discover and represent knowledge in Semantic Web form. Studies show that, to represent knowledge in Semantic Web standard, data mining techniques such as Decision Trees, Association Rules, etc., play an important role. These techniques are implemented in publicly available Data Mining tools. These tools represent knowledge discovered in human readable format and some tools use Predictive Model Markup language (PMML). PMML is an XML based model for data mining model representation that fails to address the representation of the semantics of t…

PMMLOntologyDecision Treeontologiasemanttinen webSematic webRule-based knowledgeSWRL
researchProduct

Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)

2017

International audience; This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the pred…

Computer sciencecomputer.internet_protocol02 engineering and technologycomputer.software_genreIndustrial and Manufacturing EngineeringArticleSet (abstract data type)[SPI]Engineering Sciences [physics]Kriging020204 information systems0202 electrical engineering electronic engineering information engineeringUncertainty quantificationRepresentation (mathematics)predictive model markup language (PMML)Probabilistic logicdata miningPredictive analyticsXMLComputer Science Applicationspredictive analyticsControl and Systems EngineeringPredictive Model Markup Languagestandards020201 artificial intelligence & image processingData miningcomputerXMLGaussian process regression
researchProduct

A Neural Network Meta-Model and its Application for Manufacturing

2015

International audience; Manufacturing generates a vast amount of data both from operations and simulation. Extracting appropriate information from this data can provide insights to increase a manufacturer's competitive advantage through improved sustainability, productivity, and flexibility of their operations. Manufacturers, as well as other industries, have successfully applied a promising statistical learning technique, called neural networks (NNs), to extract meaningful information from large data sets, so called big data. However, the application of NN to manufacturing problems remains limited because it involves the specialized skills of a data scientist. This paper introduces an appr…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]0209 industrial biotechnology[SPI] Engineering Sciences [physics]Computer scienceneural networkBig dataContext (language use)02 engineering and technologycomputer.software_genreMachine learningCompetitive advantageData modeling[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI][SPI]Engineering Sciences [physics]020901 industrial engineering & automationPMML0202 electrical engineering electronic engineering information engineering[ SPI ] Engineering Sciences [physics][ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]data analyticsArtificial neural networkbusiness.industrymeta-modelMetamodelingmanufacturingAnalyticsSustainabilityPredictive Model Markup LanguageData analysis020201 artificial intelligence & image processingData miningArtificial intelligencebusinesscomputer
researchProduct