Search results for "POLARITON"

showing 10 items of 162 documents

Nondiffracting Bessel plasmons.

2011

We report on the existence of nondiffracting Bessel surface plasmon polaritons (SPPs), advancing at either superluminal or subluminal phase velocities. These wave fields feature deep subwavelength FWHM, but are supported by high-order homogeneous SPPs of a metal/dielectric (MD) superlattice. The beam axis can be relocated to any MD interface, by interfering multiple converging SPPs with controlled phase matching. Dissipative effects in metals lead to a diffraction-free regime that is limited by the energy attenuation length. However, the ultra-localization of the diffracted wave field might still be maintained by more than one order of magnitude. This research was funded by the Spanish Mini…

DiffractionLightPhase (waves)Physics::OpticsSurface plasmons01 natural sciences010309 opticssymbols.namesakeOptics0103 physical sciencesScattering RadiationComputer Simulation010306 general physicsPropagationPlasmonÓpticaPhysicsbusiness.industrySurface plasmonEquipment DesignSurface Plasmon ResonanceSurface plasmon polaritonAtomic and Molecular Physics and OpticsRefractometrySurface wavesymbolsPhase velocitybusinessBessel functionOptics express
researchProduct

Molecular coupling of light with plasmonic waveguides.

2007

We use molecules to couple light into and out of microscale plasmonic waveguides. Energy transfer, mediated by surface plasmons, from donor molecules to acceptor molecules over ten micrometer distances is demonstrated. Also surface plasmon coupled emission from the donor molecules is observed at similar distances away from the excitation spot. The lithographic fabrication method we use for positioning the dye molecules allows scaling to nanometer dimensions. The use of molecules as couplers between far-field and near-field light offers the advantages that no special excitation geometry is needed, any light source can be used to excite plasmons and the excitation can be localized below the d…

DiffractionMaterials scienceFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural sciences7. Clean energyMicrometreOpticsPhysics - Chemical Physics0103 physical sciencesPolaritonPhysics::Chemical Physics010306 general physicsPlasmonChemical Physics (physics.chem-ph)business.industrySurface plasmonMolecular electronics021001 nanoscience & nanotechnologySurface plasmon polaritonAtomic and Molecular Physics and Optics0210 nano-technologybusinessExcitationOptics (physics.optics)Physics - OpticsOptics express
researchProduct

Diffraction-free propagation of subwavelength light beams in layered media

2010

Self-collimation of tightly localized laser beams demonstrated in periodic media relies on a perfect-matched rephasing of the Fourier constituents of the wavefield induced by a plane isofrequency curve. An alternate way paved for the achievement of such a phase matching condition developed a suitable spatial filtering in order to select those frequencies experiencing the same phase velocity projected over a given orientation. In principle this procedure is valid for complex structured metamaterials. However, a great majority of studies have focused on free-space propagation leading to the well-known Bessel beams. This paper is devoted to the analysis of this sort of nondiffracting beams tra…

DiffractionPhysicsSpatial filterWave propagationbusiness.industryPhysics::OpticsMetamaterialStatistical and Nonlinear PhysicsSurface plasmon polaritonAtomic and Molecular Physics and OpticsSuperposition principleOpticsBessel beamLight beambusinessJournal of the Optical Society of America B
researchProduct

Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon

2011

International audience; The experimental observation of a one-dimensional evanescent wave supported by a 90◦ metal edge is reported. Through a measurement of in-plane momenta, we clearly demonstrate the dimensional character of this surface wave and show that it is non-radiative in the superstrate. Excitation conditions, lateral extension and polarization properties of this wave are discussed. Finally, we explore the effect of the surrounding dielectric medium and demonstrate that a single edge can sustain distinct excitations.

DiffractionPhysicsTotal internal reflectionbusiness.industrySurface plasmon02 engineering and technology021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesElectromagnetic radiationSurface plasmon polaritonAtomic and Molecular Physics and OpticsOpticsSurface wave0103 physical sciences[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technologybusiness
researchProduct

Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators

2012

International audience; In this paper, we experimentally show the effect of waveguide discontinuity on the propagation of the surface plasmon in metal stripes and tapered terminations. Dual-plane leakage microscopy and near-field microscopy were performed on Au stripes with varied widths to imag29e the surface plasmon intensity distribution in real and reciprocal spaces. We unambiguously demonstrate that edge diffraction is the limiting process determining the cutoff conditions of the surface plasmon mode. Finally, we determine the optimal tapered geometry leading to the highest transmission.

DiffractionTotal internal reflectionMaterials sciencebusiness.industrySurface plasmonNanophotonicsPhysics::OpticsStatistical and Nonlinear Physics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSurface plasmon polaritonAtomic and Molecular Physics and Opticslaw.inventionOpticslaw0103 physical sciencesNear-field scanning optical microscope[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technologybusinessWaveguideLocalized surface plasmon
researchProduct

Dynamical Casimir-Polder interaction between an atom and a real surface

2014

We discuss the dynamical (i.e. time-dependent) Casimir-Polder force between a neutral atom and a real surface of arbitrary material, under non-equilibrium conditions. More specifically, we consider a polarisable neutral atom placed near a surface with arbitrary dielectric properties and we investigate the dynamical dressing and the consequent dynamical Casimir-Polder potential after the non-adiabatic (sudden) change of parameters involved in the atom-field coupling, such as the atomic transition frequency or the transition dipole moment. Using time-dependent perturbation theory and the matter-assisted field approach, we discuss how the physical properties of the real surface can influence t…

Dynamical Casimir-Polder forceSurface polaritons
researchProduct

Photo-thermal control of surface plasmon mode propagation at telecom wavelengths

2016

Surface plasmon polaritons (SPPs) is the promising versatile platform proposed for guiding electromagnetic waves at nanoscale dimensions. In this context dynamic control of SPPs prop- agation is of paramount importance. Thermo-optical (TO) effect is considered as an efficient technique for performing active control of plasmonic devices. Among the thermo-optical based plasmonic devices demonstrated so far TO coefficient is dominantly provided by a dielectric material on top of the metal sustaining the SPP mode, however, the role of TO properties of the metal has been rarely investigated for plasmonic applications especially at the telecom frequency ranges. Therefore, the aim of this thesis i…

Effets photo-thermique[PHYS.PHYS]Physics [physics]/Physics [physics]Plasmon-polaritons de surface (SPPs)Guides d’ondes en polymèresPhoto-thermal effectsSurface plasmon polaritons (SPPs)Metal opticsMatériaux thermo-optiquesPolymer waveguides[ PHYS.PHYS ] Physics [physics]/Physics [physics]Optical switching devicesThermo-optical ma- terialsPlasmonic waveguidesGuides d’onde plasmoniquesDispositifs de commutation optique[PHYS.PHYS] Physics [physics]/Physics [physics]Optique de métal
researchProduct

Study of the angular acceptance of surface plasmon Bragg mirrors

2007

Surface plasmon based photonic devices are promising candidates for highly integrated optics. A surface plasmon (SP) is basically an electromagnetic wave confined in the interface between a metal and a dielectric, and is due to the interaction of the electromagnetic field with the surface bounded electron charges in the metal. A SP can propagate along the interface where it is confined (the propagation length being tens of micrometers in the visible range), but its associated electromagnetic field decreases exponentially in the perpendicular direction, in such a way that this vertical confinement makes SP very attractive for the design of optical devices in coplanar geometry. An important e…

Electromagnetic fieldMaterials sciencebusiness.industrySurface plasmonPhysics::OpticsGratingSurface plasmon polaritonElectromagnetic radiationOpticsAngle of incidence (optics)Dispersion relationDispersion (optics)Optoelectronicsbusiness2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference
researchProduct

Four-wave mixing and vacuum squeezing in polariton microcavities

2017

In a recent paper [1] it has been shown how a bichromatic fast driving of optomechanical (optical domain) and superconducting circuit systems (microwave domain), operating in a limit where they present a non-linear Kerr-type interaction, can give rise to very strong vacuum squeezing. The driving with two close frequencies of a Kerr cavity changes the usual bistability bifurcation behaviour that takes place under monochromatic driving, into a degenerate four-wave mixing bifurcation, where a phase-bistable component starts oscillating spontaneously at a frequency that lies halfway between the two driving frequencies [2]. This resembles the physics of the optical parametric oscillator threshol…

Electromagnetic fieldPhysicsBistability02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOptical bistabilityFour-wave mixingQuantum mechanics0103 physical sciencesOptical parametric oscillatorPolariton010306 general physics0210 nano-technologyBifurcationQuantum fluctuation
researchProduct

Suppression of radiative losses of surface polaritons on nanostructured thin metal films

2005

The strong electromagnetic coupling between surface plasmon polariton modes on opposite interfaces of a finite thickness periodically nanostructured metal film has been studied. Surface polariton dispersion and associated electromagnetic field distributions have been analyzed. It was shown that at a frequency that corresponds to the crossing of film Bloch modes of different symmetries, the radiative losses of surface polaritons that are related to the polaritons' coupling to light during propagation on the structured surface are suppressed.

Electromagnetic field[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials sciencePhysics::Optics01 natural sciencesElectromagnetic radiation010309 opticsOptics0103 physical sciencesDispersion (optics)Radiative transferPolariton010306 general physicsComputingMilieux_MISCELLANEOUSCondensed Matter::Quantum Gases[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Condensed matter physicsCondensed Matter::Otherbusiness.industrySurface plasmonSurface plasmon polaritonAtomic and Molecular Physics and OpticsOCIS codes: 240.6680 240.0310Surface wavebusiness
researchProduct