Search results for "POTENTIATION"

showing 10 items of 116 documents

Neural inflammation alters synaptic plasticity probed by 10 Hz repetitive magnetic stimulation

2020

ABSTRACTSystemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.e., the long-term potentiation (LTP) of excitatory neurotransmission. Here, we tested whether synaptic plasticity induced by repetitive magnetic stimulation (rMS), a non-invasive brain stimulation technique used in clinical practice, is affected by L…

ChemistryBrain stimulationSynaptic plasticityExcitatory postsynaptic potentialStimulationTumor necrosis factor alphaLong-term potentiationNeurotransmissionHippocampal formationNeuroscience
researchProduct

Long-Term Potentiation in the Recurrent Inhibitory Circuit of the Dentate Gyrus

1988

The question of whether long-term potentiation occurs in the inhibitory circuits of the hippocampus remains controversial. Buszaki and Eidelberg (1982), recording extracellularly from putative interneurones (basket cells) in the dentate gyrus and area CAl of the anaesthetized rat, found a prolonged increase in probability of cell firing to afferent stimulation after high-frequency stimulation of Schaffer-commissural fibres, and concluded that LTP occurs at excitatory feedforward synapses onto interneurones. Similarly, Kairis et al (1987) have presented field potential evidence for LTP in feedforward synapses onto inhibitory neurones in the dentate gyrus of the anaesthetized rat. In the hipp…

Chemistrymusculoskeletal neural and ocular physiologyDentate gyrusHippocampusLong-term potentiationPerforant pathInhibitory postsynaptic potentialGranule cellmedicine.anatomical_structurenervous systemBasket cellmedicineExcitatory postsynaptic potentialNeuroscience
researchProduct

Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4

2001

Neurotrophin-4 (NT-4) is produced by slow muscle fibers in an activity-dependent manner and promotes growth and remodeling of adult motorneuron innervation. However, both muscle fibers and motor neurons express NT-4 receptors, suggesting bidirectional NT-4 signaling at the neuromuscular junction. Mice lacking NT-4 displayed enlarged and fragmented neuromuscular junctions with disassembled postsynaptic acetylcholine receptor (AChR) clusters, reduced AChR binding, and acetylcholinesterase activity. Electromyographic responses, posttetanic potentiation, and action potential amplitude were also significantly reduced in muscle fibers from NT-4 knock-out mice. Slow-twitch soleus muscles from thes…

End-plate potentialNeuromuscular JunctionElectromyographyBiologyNeuromuscular junctionCellular and Molecular NeuroscienceMicePostsynaptic potentialmedicineAnimalsReceptors CholinergicNerve Growth FactorsMuscle SkeletalMolecular BiologyAcetylcholine receptorMice KnockoutMotor Neuronsmedicine.diagnostic_testMuscle fatigueElectromyographyAge FactorsLong-term potentiationneuromuscular junction; neurotrophin-4; synaptic transmissionCell Biologymedicine.anatomical_structureMuscle Fibers Slow-TwitchMuscle FatigueAcetylcholinesteraseTetanic stimulationNeuroscienceMuscle Contraction
researchProduct

Prenatal low-level exposure to CO alters postnatal development of hippocampal nitric oxide synthase and haem-oxygenase activities in rats.

2001

The effects of prenatal CO exposure (150 ppm from days 0 to 20 of pregnancy) on the postnatal development of hippocampal neuronal NO synthase (nNOS) and haem-oxygenase (HO-2) isoform activities in 15-, 30- and 90-d-old rats were investigated. Unlike HO-2, hippocampal nNOS activity increased from postnatal days 15-90 in controls. Prenatal CO produced a long-lasting decrease in either nNOS or HO-2. The results suggest that the altered developmental profile of hippocampal nNOS and HO-2 activities could be involved in cognitive deficits and long-term potentiation dysfunction exhibited by rats prenatally exposed to CO levels resulting in carboxyhaemoglobin (HbCO) levels equivalent to those obser…

Gene isoformmedicine.medical_specialtyNitric Oxide Synthase Type IHippocampal formationHippocampusCarbon monoxide; haem-oxygenase; hippocampus; nitric oxide synthase; prenatal exposure.HemoglobinsPregnancyInternal medicinemedicineAnimalsPharmacology (medical)Rats WistarPharmacologyDevelopmental profilePregnancyCarbon MonoxidebiologyChemistryLong-term potentiationLow level exposuremedicine.diseaseHaem OxygenaseRatsNitric oxide synthaseIsoenzymesPsychiatry and Mental healthEndocrinologyPrenatal Exposure Delayed EffectsHeme Oxygenase (Decyclizing)biology.proteinFemaleNitric Oxide SynthaseThe international journal of neuropsychopharmacology
researchProduct

Presynaptic nitric oxide/cGMP facilitates glutamate release via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus

2011

In hippocampal neurons, synaptic transmission is affected by a variety of modulators, including nitric oxide (NO), which was proposed as a retrograde messenger as long as two decades ago. NO signals via two NO-sensitive guanylyl cyclases (NO-GCs) (NO-GC1 and NO-GC2) and the subsequent increase in cGMP. Lack of long-term potentiation in mice deficient in either one of the two NO-GCs demonstrates the involvement of both NO-GCs in synaptic transmission. However, the physiological consequences of NO/cGMP and the cellular mechanisms involved are unknown. Here, we analyzed glutamatergic synaptic transmission, most likely reflecting glutamate release, in the hippocampal CA1 region of NO-GC knockou…

General NeuroscienceGlutamate receptorLong-term potentiationHyperpolarization (biology)BiologyNeurotransmissionNitric oxideCell biologychemistry.chemical_compoundGlutamatergicBiochemistrychemistryRetrograde signalingSoluble guanylyl cyclaseEuropean Journal of Neuroscience
researchProduct

Lack of APP and APLP2 in GABAergic Forebrain Neurons Impairs Synaptic Plasticity and Cognition.

2020

AbstractAmyloid-β precursor protein (APP) is central to the pathogenesis of Alzheimer’s disease, yet its physiological functions remain incompletely understood. Previous studies had indicated important synaptic functions of APP and the closely related homologue APLP2 in excitatory forebrain neurons for spine density, synaptic plasticity, and behavior. Here, we show that APP is also widely expressed in several interneuron subtypes, both in hippocampus and cortex. To address the functional role of APP in inhibitory neurons, we generated mice with a conditional APP/APLP2 double knockout (cDKO) in GABAergic forebrain neurons using DlxCre mice. These DlxCre cDKO mice exhibit cognitive deficits i…

InterneuronCognitive NeuroscienceLong-Term PotentiationSpatial LearningHippocampusAction PotentialsInhibitory postsynaptic potentialHippocampusNesting Behavior03 medical and health sciencesCellular and Molecular NeuroscienceAmyloid beta-Protein PrecursorMice0302 clinical medicineCognitionProsencephalonAmyloid precursor proteinmedicineAnimalsGABAergic NeuronsCA1 Region Hippocampal030304 developmental biologySpatial MemoryMice Knockout0303 health sciencesNeuronal PlasticitybiologyPyramidal CellsExcitatory Postsynaptic PotentialsLong-term potentiationmedicine.anatomical_structurenervous systemInhibitory Postsynaptic PotentialsSynaptic plasticityForebrainExcitatory postsynaptic potentialbiology.proteinNeuroscience030217 neurology & neurosurgeryCerebral cortex (New York, N.Y. : 1991)
researchProduct

The expression mechanism of the residual LTP in the CA1 region of BDNF k.o. mice is insensitive to NO synthase inhibition

2011

Abstract BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF +/− ) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibi…

Long-Term PotentiationBiophysicsTropomyosin receptor kinase BIn Vitro TechniquesBiologyNitric oxideMicechemistry.chemical_compoundmedicineAnimalsEnzyme InhibitorsCA1 Region HippocampalMolecular BiologyMice KnockoutBrain-derived neurotrophic factorBrain-Derived Neurotrophic Factormusculoskeletal neural and ocular physiologyGeneral NeuroscienceExcitatory Postsynaptic PotentialsLong-term potentiationElectric StimulationCell biologyMice Inbred C57BLNG-Nitroarginine Methyl EsterSynaptic fatiguemedicine.anatomical_structureAnimals Newbornnervous systemchemistrySchaffer collateralSynaptic plasticityRetrograde signalingNeurology (clinical)Nitric Oxide SynthaseNeuroscienceDevelopmental BiologyBrain Research
researchProduct

Cannabinoid CB1 Receptor Calibrates Excitatory Synaptic Balance in the Mouse Hippocampus

2015

The endocannabinoid system negatively regulates the release of various neurotransmitters in an activity-dependent manner, thereby influencing the excitability of neuronal circuits. In the hippocampus, cannabinoid type 1 (CB1) receptor is present on both GABAergic and glutamatergic axon terminals. CB1 receptor-deficient mice were previously shown to have increased hippocampal long-term potentiation (LTP). In this study, we have investigated the consequences of cell-type-specific deletion of the CB1 receptor on the induction of hippocampal LTP and on CA1 pyramidal cell morphology. Deletion of CB1 receptor in GABAergic neurons in GABA-CB1-KO mice leads to a significantly decreased hippocampal …

Long-Term PotentiationHippocampusHippocampal formationBiologyHippocampusSynaptic TransmissionMiceGlutamatergicReceptor Cannabinoid CB1medicineAnimalsAxonMice KnockoutNeuronal Plasticitymusculoskeletal neural and ocular physiologyGeneral NeuroscienceExcitatory Postsynaptic Potentialsfood and beveragesLong-term potentiationArticlesEndocannabinoid systemMice Inbred C57BLmedicine.anatomical_structurenervous systemSynapsesSynaptic plasticityGABAergiclipids (amino acids peptides and proteins)NeuroscienceThe Journal of Neuroscience
researchProduct

Potentiation of the antitumor effects of both selective cyclooxygenase-1 and cyclooxygenase-2 inhibitors in human hepatic cancer cells by inhibition …

2007

The molecular mechanisms behind the anti-neoplastic effects of non-steroidal anti-inflammatory drugs (NSAIDs) are not completely understood and cannot be explained by the inhibition of the cyclooxygenase (COX) enzymes COX-1 and COX-2 alone. We previously reported that both the selective COX-1 inhibitor SC-560 and the selective COX-2 inhibitor CAY10404 exhibit anti-tumor effects in human hepatoma cells. NSAID inhibitors have many COX-independent actions and, among others, the mitogen-activated protein kinase (MAPK) pathways are targets for NSAIDs. Here, we examined the role of MEK/ERK1/2 signaling in the anti-neoplastic effects of both selective COX-1 and COX-2 inhibitors in two human hepato…

MAPK/ERK pathwayCancer ResearchCarcinoma HepatocellularTime FactorsBlotting WesternApoptosisPharmacologyCOX-1 COX-2 NSAIDs MEK1/2 ERK1/2NitrilesButadienesTumor Cells CulturedHumansCyclooxygenase InhibitorsSulfonesEnzyme InhibitorsPhosphorylationProtein kinase ACell ProliferationPharmacologychemistry.chemical_classificationMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase KinasesMitogen-Activated Protein Kinase 3biologyDose-Response Relationship DrugLiver NeoplasmsCytochromes cLong-term potentiationDrug SynergismIsoxazolesFlow CytometryEnzymeOncologychemistryCyclooxygenase 2CaspasesCancer cellbiology.proteinCyclooxygenase 1Molecular MedicineMEK-ERK PathwayPyrazolesDrug Therapy CombinationCyclooxygenaseHepatoma cellCancer biologytherapy
researchProduct

Neural stem cell lineage-specific cannabinoid type-1 receptor regulates neurogenesis and plasticity in the adult mouse hippocampus

2018

Abstract Neural stem cells (NSCs) in the adult mouse hippocampus occur in a specific neurogenic niche, where a multitude of extracellular signaling molecules converges to regulate NSC proliferation as well as fate and functional integration. However, the underlying mechanisms how NSCs react to extrinsic signals and convert them to intracellular responses still remains elusive. NSCs contain a functional endocannabinoid system, including the cannabinoid type-1 receptor (CB1). To decipher whether CB1 regulates adult neurogenesis directly or indirectly in vivo, we performed NSC-specific conditional inactivation of CB1 by using triple-transgenic mice. Here, we show that lack of CB1 in NSCs is su…

Male0301 basic medicineCell signalingCannabinoid receptorNeurogenesisCognitive NeuroscienceLong-Term PotentiationMice Transgenicmouse hippocampus ; neural stem cells ; neurogenesis-dependent behavior ; CB1 ; adult neurogenesisHippocampal formationBiologyHippocampus03 medical and health sciencesCellular and Molecular Neurosciencemouse hippocampus0302 clinical medicineNeural Stem CellsReceptor Cannabinoid CB1Animalsreproductive and urinary physiologySpatial MemoryBehavior AnimalNeurogenesisLong-term potentiationOriginal ArticlesCB1Endocannabinoid systemneurogenesis-dependent behaviorNeural stem cellCell biologyadult neurogenesisMice Inbred C57BL030104 developmental biologynervous systemlipids (amino acids peptides and proteins)biological phenomena cell phenomena and immunityStem cell030217 neurology & neurosurgeryCerebral Cortex
researchProduct