Search results for "POTENTIATION"

showing 10 items of 116 documents

2019

Post-activation potentiation (PAP) is a well-described phenomenon with a short half-life (~28 s) that enhances muscle force production at submaximal levels of calcium saturation (i.e., submaximal levels of muscle activation). It has been largely explained by an increased myosin light chain phosphorylation occurring in type II muscle fibers, and its effects have been quantified in humans by measuring muscle twitch force responses to a bout of muscular activity. However, enhancements in (sometimes maximal) voluntary force production detected several minutes after high-intensity muscle contractions are also observed, which are also most prominent in muscles with a high proportion of type II fi…

Myosin light-chain kinasePhysiologybusiness.industryPerspective (graphical)Long-term potentiation030229 sport sciences03 medical and health sciences0302 clinical medicinePhysiology (medical)Time coursePost activation potentiationActive muscleMedicinebusinessPerformance enhancementNeuroscience030217 neurology & neurosurgeryMuscle forceFrontiers in Physiology
researchProduct

Reduced presynaptic efficiency of excitatory synaptic transmission impairs LTP in the visual cortex of BDNF-heterozygous mice

2006

The neurotrophin brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival, axonal and dendritic growth and synapse formation. BDNF has also been reported to mediate visual cortex plasticity. Here we studied the cellular mechanisms of BDNF-mediated changes in synaptic plasticity, excitatory synaptic transmission and long-term potentiation (LTP) in the visual cortex of heterozygous BDNF-knockout mice (BDNF(+/-)). Patch-clamp recordings in slices showed an approximately 50% reduction in the frequency of miniature excitatory postsynaptic currents (mEPSCs) compared to wild-type animals, in the absence of changes in mEPSC amplitudes. A presynaptic impairment of excita…

N-MethylaspartatePatch-Clamp TechniquesTime FactorsLong-Term PotentiationPresynaptic TerminalsAMPA receptorIn Vitro TechniquesSynaptic TransmissionMicePostsynaptic potentialQuinoxalinesExcitatory Amino Acid AgonistsAnimalsalpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidVisual CortexMice KnockoutNeuronsBrain-derived neurotrophic factorDose-Response Relationship DrugPost-tetanic potentiationChemistryBrain-Derived Neurotrophic FactorGeneral NeuroscienceDose-Response Relationship RadiationLong-term potentiationElectric StimulationSynaptic fatigueAnimals Newbornnervous systemSynaptic plasticityExcitatory postsynaptic potentialCalciumExcitatory Amino Acid AntagonistsNeuroscienceEuropean Journal of Neuroscience
researchProduct

Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity

2015

Slc4a10 is a Na(+)-coupled Cl(-)-HCO3 (-) exchanger, which is expressed in principal and inhibitory neurons as well as in choroid plexus epithelial cells of the brain. Slc4a10 knockout (KO) mice have collapsed brain ventricles and display an increased seizure threshold, while heterozygous deletions in man have been associated with idiopathic epilepsy and other neurological symptoms. To further characterize the role of Slc4a10 for network excitability, we compared input-output relations as well as short and long term changes of evoked field potentials in Slc4a10 KO and wildtype (WT) mice. While responses of CA1 pyramidal neurons to stimulation of Schaffer collaterals were increased in Slc4a1…

Neocortexsynaptic plasticitySeizure thresholdGABAergic inhibitionNeural facilitationHippocampusLong-term potentiationBiologyInhibitory postsynaptic potentiallcsh:RC321-571field potentialCellular and Molecular Neurosciencemedicine.anatomical_structureKnockout mouseSynaptic plasticitymedicineLTPNeuroscienceSLC4A10lcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

A model for long-term potentiation and depression

1995

A computational model of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus is presented. The model assumes the existence of retrograde signals, is in good agreement with several experimental data on LTP, LTD, and their pharmacological manipulations, and shows how a simple kinetic scheme can capture the essential characteristics of the processes involved in LTP and LTD. We propose that LTP and LTD could be two different but conceptually similar processes, induced by the same class of retrograde signals, and maintained by two distinct mechanisms. An interpretation of a number of experiments in terms of the molecular processes involved in LTP and LTD induction and …

Neuronal PlasticityTime FactorsKinetic modelmusculoskeletal neural and ocular physiologyCognitive NeuroscienceLong-Term PotentiationModels NeurologicalHippocampusLong-term potentiationHippocampusSensory SystemsKineticsCellular and Molecular Neurosciencenervous systemSynapsesRetrograde signalingAnimalsHumansComputer SimulationPsychologyNeuroscienceMathematicsSignal TransductionJournal of Computational Neuroscience
researchProduct

Kavapyrone enriched extract fromPiper methysticum as modulator of the GABA binding site in different regions of rat brain

1994

Regional differences in the modulation of [3H] muscimol binding to GABAA receptor complexes by kavapyrones, compounds of the rhizome of the plant Piper methysticum which possess sedative activity, were demonstrated using membrane fractions obtained from target brain centers of kavapyrone action: hippocampus (HIP), amygdala (AMY) and medulla oblongata (MED), and from brain centers outside the main kavapyrone effects as frontal cortex (FC) and cerebellum (CER). The kava extract enhanced the binding of [3H] muscimol in a concentration-dependent manner with maximal potentiation of 358% over control in HIP followed by AMY and MED (main target brain centers). Minimal stimulation was observed in C…

OvariectomyStimulationIn Vitro TechniquesPharmacologyBiologyBinding CompetitiveRats Sprague-Dawleychemistry.chemical_compoundReceptors GABAmedicineAnimalsBinding siteKavainReceptorPentobarbitalBrain ChemistryPharmacologyDiazepamPlants MedicinalMuscimolPlant ExtractsGABAA receptorLong-term potentiationRatsnervous systemMechanism of actionMuscimolchemistryPyronesFemaleSteroidsmedicine.symptomNeurosciencePsychopharmacology
researchProduct

Gadd45α modulates aversive learning through post‐transcriptional regulation of memory‐related mRNA s

2018

Abstract Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well‐known role of RNA‐binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage‐inducible protein 45 alpha, encoded by the Gadd45a gene). Here, we find that hippocampal memory and long‐term potentiation are strongly impaired in Gadd45a‐deficient mice, a phenotype accompanied by reduced levels of memory‐related mRNAs. The majority of the Ga…

Pain ThresholdUntranslated regionRegulatorGene ExpressionCell Cycle ProteinsHippocampusBiochemistryArticlememoryMice03 medical and health sciences0302 clinical medicineGeneticsAnimalsLearningRNA MessengerMolecular BiologyPost-transcriptional regulationGrin2a030304 developmental biologyMice Knockout0303 health sciencesMessenger RNANeuronal PlasticityBehavior AnimalbiologyLong-term potentiationArticlesRNA stabilityAmygdalaRNA BiologyCell biologyGene Expression Regulationbiology.proteinGRIN2ARNA InterferenceMemory consolidationGADD45A030217 neurology & neurosurgeryGadd45aNeuroscienceEMBO reports
researchProduct

Postsynaptic NO/cGMP Increases NMDA Receptor Currents via Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in the Hippocampus

2013

The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling cascade participates in the modulation of synaptic transmission. The effects of NO are mediated by the NO-sensitive cGMP-forming guanylyl cyclases (NO-GCs), which exist in 2 isoforms with indistinguishable regulatory properties. The lack of long-term potentiation (LTP) in knock-out (KO) mice deficient in either one of the NO-GC isoforms indicates the contribution of both NO-GCs to LTP. Recently, we showed that the NO-GC1 isoform is located presynaptically in glutamatergic neurons and increases the glutamate release via hyperpolarization-activated cyclic nucleotide (HCN)-gated channels in the hippocampus. Electrophysiologi…

Patch-Clamp TechniquesCognitive NeuroscienceLong-Term PotentiationIn Vitro TechniquesNeurotransmissionNitric OxideReceptors N-Methyl-D-AspartateMiceCellular and Molecular Neurosciencechemistry.chemical_compoundCyclic nucleotidePostsynaptic potentialHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsHCN channelAnimalsAnesthetics LocalCA1 Region HippocampalCyclic GMPCyclic guanosine monophosphateMice KnockoutNeuronsbiologyLidocaineTetraethylammoniumLong-term potentiationHyperpolarization (biology)Electric StimulationPyrimidinesAnimals Newbornnervous systemchemistryGuanylate CyclaseBiophysicsbiology.proteinNMDA receptorExcitatory Amino Acid AntagonistsNeuroscienceCerebral Cortex
researchProduct

A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors.

2003

Recent evidence indicates that trophic factors can exert fast effects on neurones and so alter synaptic plasticity. Here, we focus on brain-derived neurotrophic factor (BDNF), which exerts a modulatory action at hippocampal synapses that are involved in learning and memory, and at the first pain synapse between primary sensory neurones and dorsal horn neurones. Hippocampal and sensory neurones share some properties for the release of endogenous BDNF. In the Schaffer collateral pathway of the hippocampus, binding of BDNF to high-affinity trkB receptors is essential for the induction of long-term potentiation, a specific type of synaptic plasticity. However, the consequences of BDNF binding t…

PharmacologyBrain-derived neurotrophic factorBrain-Derived Neurotrophic FactorPainLong-term potentiationTropomyosin receptor kinase BToxicologyHippocampusSynapsemedicine.anatomical_structurenervous systemSchaffer collateralNeurotrophic factorsMemorySynaptic plasticityMetaplasticitySynapsesmedicineHumansReceptor trkBNeurons AfferentPsychologyNeuroscienceTrends in pharmacological sciences
researchProduct

Metaplasticity of horizontal connections in the vicinity of focal laser lesions in rat visual cortex

2010

Focal cortical injuries are accompanied by a reorganization of the adjacent neuronal networks. An increased synaptic plasticity has been suggested to mediate, at least in part, this functional reorganization. Previous studies showed an increased long-term potentiation (LTP) at synapses formed by ascending fibres projecting onto layers 2/3 pyramidal cells following lesions in rat visual cortex. This could be important to establish new functional connections within a vertical cortical column. Importantly, horizontal intracortical connections constitute an optimal substrate to mediate the functional reorganization across different cortical columns. However, so far little is known about their p…

PhysiologyChemistryLong-term potentiationLesionCellular mechanismmedicine.anatomical_structureVisual cortexCerebral cortexSynaptic plasticityMetaplasticitymedicinemedicine.symptomNeuroscienceCortical columnThe Journal of Physiology
researchProduct

Individual differences in the induction of sensitisation or tolerance to the motor effects of morphine in mice

2001

Acute morphine administration produces hyperactivity in most strains of mice and some studies indicate that repeated treatment can induce a potentiation of this effect (sensitisation). With the object of determining whether the hyperactivity induced by morphine in OF1 mice shows sensitisation after repeated administration, we tested the effect of the pre-exposure to six daily injections of morphine on the subsequent hyperactivity induced by the same dose of this drug. Animals were treated with 40 mg/kg of morphine for seven days. After the last injection they were tested in an actimeter at different points at time (15, 30, 45 and 60 min). This repeated schedule of treatment produced sensiti…

Repeated treatmentbusiness.industryGeneral NeuroscienceMorphineMedicineLong-term potentiationPharmacologybusinessmedicine.drugNeuroscience Research Communications
researchProduct