Search results for "PROB"
showing 10 items of 8859 documents
Influence of surface topography on depth profiles obtained by Rutherford backscattering spectrometry
2000
A method for determining correct depth profiles from samples with rough surfaces is presented. The method combines Rutherford backscattering spectrometry with atomic force microscopy. The topographical information obtained by atomic force microscopy is used to calculate the effect of the surface roughness on the backscattering spectrum. As an example, annealed Au/ZnSe heterostructures are studied. Gold grains were observed on the surfaces of the annealed samples. The annealing also caused diffusion of gold into the ZnSe. Backscattering spectra of the samples were measured with a 2 MeV 4He+ ion beam. A scanning nuclear microprobe was used to verify the results by measuring backscattering fro…
On the solution of a parabolic PDE involving a gas flow through a semi-infinite porous medium
2021
Abstract Taking as start point the parabolic partial differential equation with the respective initial and boundary conditions, the present research focuses onto the flow of a sample of waste-water derived from a standard/conventional dyeing process. In terms of a highly prioritized concern, meaning environment decontamination and protection, in order to remove the dyes from the waste waters, photocatalyses like ZnO or TiO2 nanoparticles were formulated, due to their high surface energy which makes them extremely reactive and attractive. According to the basics of ideal fluid, the key point is the gas flow through an ideal porous pipe consisting of nanoparticles bound one to each other, for…
Single crystal-like thin films of blue bronze
2021
Abstract Pulsed laser deposition technique was employed to grow thin films of K 0.3 M o O 3 on A l 2 O 3 (1-102) and S r T i O 3 (510) substrates. Structural and imaging characterization revealed good quality films with well oriented grains of few microns in length. Both non-selective (transport) and order-selective (femtosecond pump-probe spectroscopy) probes revealed charge density wave properties that are very close to those of the single crystals. The films exhibit metal-semiconductor phase transition in resistivity, pump-probe data show phase transition at the same temperature as the single crystal and the threshold for the photo-induced phase transition is approximately the same as in…
Stability analysis of a paramagnetic spheroid in a precessing field
2019
Abstract The stability of a paramagnetic prolate or oblate spheroidal particle in a precessing magnetic field is studied. The bifurcation diagram is calculated analytically as a function of the magnetic field frequency and the precession angle. The orientation of the particle in the synchronous regime is calculated. The rotational dynamics and the mean rotational frequency in the asynchronous regime are also obtained. The theoretical model we describe enables the analytic calculation of the dynamics of the particle in the limiting case when the motion is periodic. The theoretical models were also compared with experimental results of rod like particle dynamics in a precessing magnetic field…
Scaling up electrically synchronized spin torque oscillator networks
2018
AbstractSynchronized nonlinear oscillators networks are at the core of numerous families of applications including phased array wave generators and neuromorphic pattern matching systems. In these devices, stable synchronization between large numbers of nanoscale oscillators is a key issue that remains to be demonstrated. Here, we show experimentally that synchronized spin-torque oscillator networks can be scaled up. By increasing the number of synchronized oscillators up to eight, we obtain that the emitted power and the quality factor increase linearly with the number of oscillators. Even more importantly, we demonstrate that the stability of synchronization in time exceeds 1.6 millisecond…
Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin–orbit effect
2017
To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI s…
Direct observation of elemental segregation in InGaN nanowires by X-ray nanoprobe
2011
Using synchrotron radiation nanoprobe, this work reports on the elemental distribution in single Inx Ga1–xN nanowires (NWs) grown by molecular beam epitaxy directly on Si(111) substrates. Single NWs dispersed on Al covered sapphire were characterized by nano-X-ray fluorescence, Raman scattering and photoluminescence spectroscopy. Both Ga and In maps reveal an inhomogeneous axial distribution inside sin- gle NWs. The analysis of NWs from the same sample but with different dimensions suggests a decrease of In segregation with the reduction of NW diameter, while Ga distribution seems to remain unaltered. Photoluminescence and Raman scattering measurements carried out on ensembles of NWs exhibi…
A New LA ‐ ICP ‐ MS Method for Ti in Quartz: Implications and Application to High Pressure Rutile‐Quartz Veins from the Czech Erzgebirge
2016
Experimental determination of the pressure and temperature controls on Ti solubility in quartz provides a calibration of the Ti-in-quartz (TitaniQ) geothermometer applicable to geological conditions up to ~ 20 kbar. We present a new method for determining 48Ti mass fractions in quartz by LA-ICP-MS at the 1 μg g−1 level, relevant to quartz in HP-LT terranes. We suggest that natural quartz such as the low-CL rims of the Bishop Tuff quartz (determined by EPMA; 41 ± 2 μg g−1 Ti, 2s) is more suitable than NIST reference glasses as a reference material for low Ti mass fractions because matrix effects are limited, Ca isobaric interferences are avoided, and polyatomic interferences at mass 48 are i…
2,4,5-Triaryl imidazole probes for the selective chromo-fluorogenic detection of Cu(II). Prospective use of the Cu(II) complexes for the optical reco…
2019
The sensing behaviour toward metal cations and biothiols of two 2,4,5-triarylimidazole probes (3a and 3b) is tested in acetonitrile and in acetonitrile-water. In acetonitrile the two probes present charge-transfer absorption bands in the 320-350 nm interval. Among all cations tested only Cu(11) is able to induce bathochromic shifts of the absorption band in the two probes, which is reflected in marked colour changes. Colour modulations are ascribed to the formation of 1:1 Cu(II)-probe complexes in which the cation interacts with the imidazole acceptor heterocycle. Besides, the two probes present intense emission bands (at 404 and 437 nm for 3a and 3b respectively) in acetonitrile that are q…
Magnetostructural correlations in CuII−NC−WV linkage: the case of [CuII(diimine)]2+−[WV(CN)8]3− 0D assemblies
2009
International audience; We report on the syntheses, crystal structures, and magnetic properties of two cyano-bridged molecular assemblies: [CuII(phen)3]2{[CuII(phen)2]2[WV(CN)8]2}(ClO4)2·10H2O (phen = 1,10-phenanthroline) (1) and {[CuII(bpy)2]2[WV(CN)8]} {[CuII(bpy)2][WV(CN)8]}·4H2O (bpy = 2,2′-bipyridyl) (2). Compound 1 consists of cyano-bridged [CuII2WV2]2− molecular rectangles and isolated [CuII(phen)3]2+ complexes. The molecular structure of 2 reveals cyano-bridged trinuclear [CuII2WV]+ and dinuclear [CuIIWV]− ions. Magnetic interactions in 1 are interpreted in terms of the model of a tetranuclear moiety consisting of two ferromagnetic CuII−NC−WV units (J1 = +39(4) cm−1) interacting ant…