Search results for "PROTEIN-PROTEIN INTERACTION"

showing 10 items of 30 documents

The Amino Acid Transporter JhI-21 Coevolves with Glutamate Receptors, Impacts NMJ Physiology, and Influences Locomotor Activity in Drosophila Larvae

2015

AbstractChanges in synaptic physiology underlie neuronal network plasticity and behavioral phenomena, which are adjusted during development. The Drosophila larval glutamatergic neuromuscular junction (NMJ) represents a powerful synaptic model to investigate factors impacting these processes. Amino acids such as glutamate have been shown to regulate Drosophila NMJ physiology by modulating the clustering of postsynaptic glutamate receptors and thereby regulating the strength of signal transmission from the motor neuron to the muscle cell. To identify amino acid transporters impacting glutmatergic signal transmission, we used Evolutionary Rate Covariation (ERC), a recently developed bioinforma…

0301 basic medicinejuvenile-hormonemelanogasterAmino Acid Transport Systemsextracellular glutamateprotein-protein interactionsPhysiology[ SDV.BA ] Life Sciences [q-bio]/Animal biologySynaptic Transmissionin-vivo0302 clinical medicinePostsynaptic potentialDrosophila Proteinsgenesglial xctMotor NeuronsAnimal biologyMultidisciplinary[SDV.BA]Life Sciences [q-bio]/Animal biologyGlutamate receptorBiological Evolutiondrosophilemedicine.anatomical_structureReceptors GlutamateLarvaExcitatory postsynaptic potentialDrosophila[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Drosophila ProteinSignal Transductionevolutionary rate covariationNeuromuscular JunctionPresynaptic TerminalsNeurotransmissionBiologyMotor ActivityArticlesynaptic vesicle03 medical and health sciencesGlutamatergicneuromuscular-junctionBiologie animalemedicineAnimalsAmino acid transporterevolutionary rate covariation;protein-protein interactions;juvenile-hormone;neuromuscular-junction;synaptic vesicle;in-vivo;extracellular glutamate;glial xct;melanogaster;genesfungiNeurosciencesExcitatory Postsynaptic PotentialsMotor neuron030104 developmental biology[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Neurons and CognitionMutation030217 neurology & neurosurgeryScientific Reports
researchProduct

A Coclustering Approach for Mining Large Protein-Protein Interaction Networks

2012

Several approaches have been presented in the literature to cluster Protein-Protein Interaction (PPI) networks. They can be grouped in two main categories: those allowing a protein to participate in different clusters and those generating only nonoverlapping clusters. In both cases, a challenging task is to find a suitable compromise between the biological relevance of the results and a comprehensive coverage of the analyzed networks. Indeed, methods returning high accurate results are often able to cover only small parts of the input PPI network, especially when low-characterized networks are considered. We present a coclustering-based technique able to generate both overlapping and nonove…

Biologycomputer.software_genreBioinformatics network analysis co-clusteringTask (project management)Set (abstract data type)Protein Interaction MappingGeneticsCluster (physics)Cluster AnalysisHumansRelevance (information retrieval)Protein Interaction MapsCluster analysisStructure (mathematical logic)Applied MathematicsProteinsprotein-protein interaction networksbiological networksComputingMethodologies_PATTERNRECOGNITIONCover (topology)Co-clusteringData miningcomputerAlgorithmsBiological networkBiotechnologyIEEE/ACM Transactions on Computational Biology and Bioinformatics
researchProduct

Study of the role of the CDC48 chaperone protein in plant immunity

2018

The chaperone protein CDC48 (Cell division cycle 48) is a major regulator of the quality control of proteins and is involved in various cellular processes in animals and yeast. In contrast, the role of CDC48 in plants is poorly known. In the present work, we investigated the function of CDC48 in plant immunity thanks to the cryptogein/tobacco biological model, cryptogein being produced by the oomycete phytophthora cryptogea.Three strategies were carried out. First, the dynamic of accumulation CDC48 together with intracellular events inherent to the immune response were analyzed in both wild-type and CDC48 overexpressing tobacco cells (CDC48-TAP line). Second, a list if CDC48 partners was es…

Cdc48Protein-Protein interaction networkImmunité des plantes[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesPlant immunityRéseau d'interaction protéine-ProtéineBiochimieBiochemistryCapx
researchProduct

Etude du rôle de la protéine CDC48 dans l'immunité des plantes

2018

The chaperone protein CDC48 (Cell division cycle 48) is a major regulator of the quality control of proteins and is involved in various cellular processes in animals and yeast. In contrast, the role of CDC48 in plants is poorly known. In the present work, we investigated the function of CDC48 in plant immunity thanks to the cryptogein/tobacco biological model, cryptogein being produced by the oomycete phytophthora cryptogea.Three strategies were carried out. First, the dynamic of accumulation CDC48 together with intracellular events inherent to the immune response were analyzed in both wild-type and CDC48 overexpressing tobacco cells (CDC48-TAP line). Second, a list if CDC48 partners was es…

Cdc48[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesProtein-Protein interaction networkImmunité des plantesPlant immunityRéseau d'interaction protéine-ProtéineBiochimieBiochemistryCapx
researchProduct

An evolutionary restricted neighborhood search clustering approach for PPI networks

2014

Protein-protein interaction networks have been broadly studied in the last few years, in order to understand the behavior of proteins inside the cell. Proteins interacting with each other often share common biological functions or they participate in the same biological process. Thus, discovering protein complexes made of a group of proteins strictly related can be useful to predict protein functions. Clustering techniques have been widely employed to detect significant biological complexes. In this paper, we integrate one of the most popular network clustering techniques, namely the Restricted Neighborhood Search Clustering (RNSC), with evolutionary computation. The two cost functions intr…

Computer sciencebusiness.industryCognitive NeuroscienceNeighborhood searchComputational biologyPPI networks clusteringGenetic algorithmsMachine learningcomputer.software_genreBudding yeastEvolutionary computationComputer Science ApplicationsOrder (biology)Artificial IntelligenceGenetic algorithmArtificial intelligenceEvolutionary approachesbusinessCluster analysiscomputerProtein-protein interaction networks clustering
researchProduct

MIPPIE: the mouse integrated protein–protein interaction reference

2020

Abstract Cells operate and react to environmental signals thanks to a complex network of protein–protein interactions (PPIs), the malfunction of which can severely disrupt cellular homeostasis. As a result, mapping and analyzing protein networks are key to advancing our understanding of biological processes and diseases. An invaluable part of these endeavors has been the house mouse (Mus musculus), the mammalian model organism par excellence, which has provided insights into human biology and disorders. The importance of investigating PPI networks in the context of mouse prompted us to develop the Mouse Integrated Protein–Protein Interaction rEference (MIPPIE). MIPPIE inherits a robust infr…

Computer scienceved/biology.organism_classification_rank.speciesprotein-protein interactionsCellular homeostasisContext (language use)Computational biologycomputer.software_genreGeneral Biochemistry Genetics and Molecular BiologyProtein–protein interaction03 medical and health sciencesMice0302 clinical medicineProtein Interaction MappingMus musculusAnimalsProtein Interaction MapsModel organismDatabases Proteinmousedatabase030304 developmental biology0303 health sciencesved/biologyComputational BiologyComplex networkprotein interaction networkOriginal ArticleWeb serviceUser interfaceGeneral Agricultural and Biological SciencesProtein networkcomputer030217 neurology & neurosurgerySoftwareInformation SystemsDatabase: The Journal of Biological Databases and Curation
researchProduct

A Protein-Interaction Array Inside a Living Cell

2013

Cell phenotype is determined by protein network states that are maintained by the dynamics of multiple protein interactions.1 Fluorescence microscopy approaches that measure protein interactions in individual cells, such as by Forster resonant energy transfer (FRET), are limited by the spectral separation of fluorophores and thus are most suitable to analyze a single protein interaction in a given cell. However, analysis of correlations between multiple protein interactions is required to uncover the interdependence of protein reactions in dynamic signal networks. Available protein-array technologies enable the parallel analysis of interacting proteins from cell extracts, however, they can …

ImmunoprecipitationRecombinant Fusion Proteinsprotein-protein interactionsImmobilized Nucleic AcidsProtein Array AnalysisreceptorsDNA Single-StrandedCatalysisProtein–protein interactionReceptors G-Protein-CoupledBimolecular fluorescence complementationProtein Array AnalysisChlorocebus aethiopsFluorescence microscopeFluorescence Resonance Energy TransferAnimalsProtein Interaction MapsProtein kinase Amultiplexed assayChemistryProteinsProtein-protein interactions Dip Pen Nanolithography Protein KinaseDNA directed immobilizationGeneral MedicineGeneral ChemistryCommunicationssurface-immobilizationKineticsLuminescent ProteinsFörster resonance energy transferBiochemistryMicroscopy FluorescenceCOS CellsBiophysicsSignal transductionAntibodies Immobilizedsignal transduction
researchProduct

Computational methodologies applied to Protein-Protein Interactions for molecular insights in Medicinal Chemistry

2021

In living systems, proteins usually team up into “molecular machinery” implementing several protein-to-protein physical contacts – or protein-protein interactions (PPIs) – to exert biological effects at both cellular and systems levels. Deregulations of protein-protein contacts have been associated with a huge number of diseases in a wide range of medical areas, such as oncology, cancer immunotherapy, infectious diseases, neurological disorders, heart failure, inflammation and oxidative stress. PPIs are very complex and usually characterised by specific shape, size and complementarity. The protein interfaces are generally large, broad and shallow, and frequently protein-protein contacts are…

InflammationComputer-Aided Drug DesignMolecular DynamicFactor HMolecular ModelingCOVID-19ACE2MUC1SpikeDrug AddictionHOXComputational Alanine ScanningC3bSettore CHIM/08 - Chimica FarmaceuticaProtein-Protein InteractionMolecular DockingComputational ChemistryNLRP3PBXCIN85RasGRF1RaCancer
researchProduct

The Protein Structure Context of PolyQ Regions.

2016

Proteins containing glutamine repeats (polyQ) are known to be structurally unstable. Abnormal expansion of polyQ in some proteins exceeding a certain threshold leads to neurodegenerative disease, a symptom of which are protein aggregates. This has led to extensive research of the structure of polyQ stretches. However, the accumulation of contradictory results suggests that protein context might be of importance. Here we aimed to evaluate the structural context of polyQ regions in proteins by analysing the secondary structure of polyQ proteins and their homologs. The results revealed that the secondary structure in polyQ vicinity is predominantly random coil or helix. Importantly, the region…

Models MolecularProtein Conformation alpha-HelicalProtein Structure ComparisonProtein StructureSaccharomyces cerevisiae ProteinsGlutaminelcsh:MedicineNerve Tissue ProteinsSaccharomyces cerevisiaePlant ScienceResearch and Analysis MethodsBiochemistryPlant Roots570 Life sciencesDatabase and Informatics MethodsProtein Structure DatabasesMacromolecular Structure AnalysisHumansProtein Interaction Domains and MotifsAmino AcidsDatabases ProteinProtein Interactionslcsh:ScienceMolecular BiologyMediator ComplexOrganic CompoundsPlant AnatomyAcidic Amino AcidsOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesProteinsRoot StructureChemistryBiological DatabasesProtein-Protein InteractionsPhysical Scienceslcsh:QStructural ProteinsProtein Structure DeterminationPeptidesResearch Article570 BiowissenschaftenPLoS ONE
researchProduct

Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis

2006

10 pages, 5 figures.-- PMID: 16341125 [PubMed].-- Available online Dec 9, 2005.

Multiprotein complexCytochromeProtein-protein interactionsApoptosisCaspase 3MitochondrionLigandsCell LineChemical librarychemistry.chemical_compoundPeptide LibraryApoptosomesPeptoidHumansCombinatorial libraries inhibitorApoptosomeProtein PrecursorsMolecular BiologybiologyCaspase 3Intrinsic apoptosisCytochromes cCell BiologyCaspase InhibitorsCaspase 9Recombinant ProteinsMitochondriaCell biologyEnzyme ActivationCaspasa-9Apoptotic Protease-Activating Factor 1chemistryBiochemistryN-substituted GlycinesApoptosisCaspasa-3biology.proteinApoptosomeApaf-1Molecular recognitionSmall moleculeProtein BindingCell Death & Differentiation
researchProduct