Search results for "PROTEOSTASIS"
showing 10 items of 38 documents
The Chaperone Activity of Clusterin is Dependent on Glycosylation and Redox Environment
2014
Background/Aims: Clusterin (CLU), also known as Apolipoprotein J (ApoJ) is a highly glycosylated extracellular chaperone. In humans it is expressed from a broad spectrum of tissues and related to a plethora of physiological and pathophysiological processes, such as Alzheimer's disease, atherosclerosis and cancer. In its dominant form it is expressed as a secretory protein (secreted CLU, sCLU). During its maturation, the sCLU-precursor is N-glycosylated and cleaved into an α- and a β-chain, which are connected by five symmetrical disulfide bonds. Recently, it has been demonstrated that besides the predominant sCLU, rare intracellular CLU forms are expressed in stressed cells. Since these for…
RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy
2014
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal an…
Heterodimerization of Two Pathological Mutants Enhances the Activity of Human Phosphomannomutase2
2015
The most frequent disorder of glycosylation is due to mutations in the gene encoding phosphomannomutase2 (PMM2-CDG). For this disease, which is autosomal and recessive, there is no cure at present. Most patients are composite heterozygous and carry one allele encoding an inactive mutant, R141H, and one encoding a hypomorphic mutant. Phosphomannomutase2 is a dimer. We reproduced composite heterozygosity in vitro by mixing R141H either with the wild type protein or the most common hypomorphic mutant F119L and compared the quaternary structure, the activity and the stability of the heterodimeric enzymes. We demonstrated that the activity of R141H/F119L heterodimers in vitro, which reproduces t…
The Hsc/Hsp70 Co-Chaperone Network Controls Antigen Aggregation and Presentation during Maturation of Professional Antigen Presenting Cells
2011
The maturation of mouse macrophages and dendritic cells involves the transient deposition of ubiquitylated proteins in the form of dendritic cell aggresome-like induced structures (DALIS). Transient DALIS formation was used here as a paradigm to study how mammalian cells influence the formation and disassembly of protein aggregates through alterations of their proteostasis machinery. Co-chaperones that modulate the interplay of Hsc70 and Hsp70 with the ubiquitin-proteasome system (UPS) and the autophagosome-lysosome pathway emerged as key regulators of this process. The chaperone-associated ubiquitin ligase CHIP and the ubiquitin-domain protein BAG-1 are essential for DALIS formation in mou…
tRNA-derived fragments: A new class of non-coding RNA with key roles in nervous system function and dysfunction
2021
tRNA-derived small RNAs (tsRNA) are a recently identified family of non-coding RNA that have been associated with a variety of cellular functions including the regulation of protein translation and gene expression. Recent sequencing and bioinformatic studies have identified the broad spectrum of tsRNA in the nervous system and demonstrated that this new class of non-coding RNA is produced from tRNA by specific cleavage events catalysed by ribonucleases such as angiogenin and dicer. Evidence is also accumulating that production of tsRNA is increased during disease processes where they regulate stress responses, proteostasis, and neuronal survival. Mutations to tRNA cleaving and modifying enz…
Special Issue on “Proteostasis and Autophagy”
2019
Autophagy is a highly conserved eukaryotic pathway responsible for the lysosomal degradation (and subsequent recycling) of cellular components such as proteins, protein aggregates, and a growing number of organelles or cellular compartments [...]
The Cleavage Product of Amyloid-β Protein Precursor sAβPPα Modulates BAG3-Dependent Aggresome Formation and Enhances Cellular Proteasomal Activity
2015
Alzheimer's disease (AD) is the major age-associated form of dementia characterized by gradual cognitive decline. Aberrant cleavage of the amyloid-β protein precursor (AβPP) is thought to play an important role in the pathology of this disease. Two principal AβPP processing pathways exist: amyloidogenic cleavage of AβPP resulting in production of the soluble N-terminal fragment sAβPPβ, amyloid-β (Aβ), which accumulates in AD brain, and the AβPP intracellular domain (AICD) sAβPPα, p3 and AICD are generated in the non-amyloidogenic pathway. Prevalence of amyloidogenic versus non-amyloidogenic processing leads to depletion of sAβPPα and an increase in Aβ. Although sAβPPα is a well-accepted neu…
An organelle-specific protein landscape identifies novel diseases and molecular mechanisms.
2016
Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub…
BAG3 Proteomic Signature under Proteostasis Stress
2020
The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidat…
Proteostasis Deregulation in Neurodegeneration and Its Link with Stress Granules: Focus on the Scaffold and Ribosomal Protein RACK1.
2022
The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC—all ribosome-related processes required for proteostasis regulation—can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during ne…