Search results for "Palladium"
showing 10 items of 956 documents
Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants
2013
Abstract Atomic layer deposition (ALD) of noble metals by thermal processes has relied mostly on the use of molecular oxygen as a reactant at temperatures of 200 °C and above. In this study, the concept of using consecutive ozone and molecular hydrogen pulses with noble metal precursors in ALD is introduced for palladium, rhodium, and platinum metals. This approach facilitates the growth of noble metal thin films below 200 °C. Also the ALD of palladium oxide thin films is demonstrated by the ozone-based chemistry. The growth rates, resistivities, crystallinities, surface roughnesses, impurity contents, and adhesion of the films to the underlying Al 2 O 3 starting surface are reported and th…
Structure Sensitivity of 2‐Methyl--butyn-2-ol Hydrogenation on Pd: Computational and Experimental Modeling
2014
Computational Investigation of Alkynols and Alkyndiols Hydrogenation on a Palladium Cluster
2013
The reaction path leading to the partial and total reduction of alkynols and alkyndiols with general formula R–CH2–C≡C–CH(OH)–R′ and R–CH(OH)–C≡C–CH(OH)–R′ (R, R′ = H, CH3) on a D3h symmetry Pd9 cl...
Unprecedented layered coordination polymers of dithiolene group 10 metals: Magnetic and electrical properties
2016
One-pot reactions between Ni(ii), Pd(ii) or Pt(ii) salts and 3,6-dichloro-1,2-benzenedithiol (HSC6H2Cl2SH) in KOH medium under argon lead to a series of bis-dithiolene coordination polymers. X-ray analysis shows the presence of a common square planar complex [M(SC6H2Cl2S)2]2- linked to potassium cations forming either a two-dimensional coordination polymer network for {[K2(μ-H2O)2(μ-thf)(thf)2][M(SC6H2Cl2S)2]}n [M = Ni (1) and Pd (2)] or a one-dimensional coordination polymer for {[K2(μ-H2O)2(thf)6][Pt(SC6H2Cl2S)2]}n (3). In 3 the coordination environment of the potassium ions may slightly change leading to the two-dimensional coordination polymer {[K2(μ-H2O)(μ-thf)2][Pt(SC6H2Cl2S)2]}n (4) …
Palladium nanoparticles immobilized on halloysite nanotubes covered by a multilayer network for catalytic applications
2018
The synthesis of pure fine chemicals for industrial purposes is one of the most attractive challenges of chemical research. The use of catalytic pathways mediated by palladium nanoparticles (PdNPs) for C-C bond formation is a useful way to obtain these kinds of compounds. To achieve this objective, the PdNPs can be efficiently loaded on a functionalized natural nanostructured support such as halloysite nanotubes (HNTs). Hybrid materials based on thiol functionalized halloysite nanotubes and highly cross-linked imidazolium salts were successfully developed and used for the stabilization of PdNPs. The HNT/Pd hybrids were thoroughly characterized from a physico-chemical point of view and teste…
Growth of Palladium Clusters on a Boron Nitride Nanotube Support
2015
We demonstrated that the migration process of a single palladium atom on the BNNT is not highly energy demanding and can be represented as a hopping mechanism between boron and nitrogen. A model was finally found for the interpretation of the growth energetics, showing that the process is generally favoured increasing the cluster size.
Hydrogen sensor based on a palladium-coated fibre-taper with improved time-response
2006
Abstract We report an experimental study of the response of a hydrogen sensor, based on a palladium-coated tapered optical fibre, at different temperatures in the range −30 to 80 °C. We have studied the transmission, the time-response and the initial response velocity, being able to correlate these measurements with the pressure–composition isotherms of the Pd–H system and its phase transitions. Heating of the palladium layer optically with an auxiliary laser diode permits to improve the sensor's time-response at low temperatures.
Diamondoid Nanostructures as sp 3 ‐Carbon‐Based Gas Sensors
2019
Diamondoids, sp3 -hybridized nanometer-sized diamond-like hydrocarbons (nanodiamonds), difunctionalized with hydroxy and primary phosphine oxide groups, enable the assembly of the first sp3 -C-based chemical sensors by vapor deposition. Both pristine nanodiamonds and palladium nanolayered composites can be used to detect toxic NO2 and NH3 gases. This carbon-based gas sensor technology allows reversible NO2 detection down to 50 ppb and NH3 detection at 25-100 ppm concentration with fast response and recovery processes at 100 °C. Reversible gas adsorption and detection is compatible with 50 % humidity conditions. Semiconducting p-type sensing properties are achieved from devices based on prim…
Palladium‐Catalyzed C2−H Arylation of Unprotected (N−H)‐Indoles “On Water” Using Primary Diamantyl Phosphine Oxides as a Class of Primary Phosphine O…
2018
X-ray snapshot observation of palladium-mediated aromatic bromination in a porous complex
2014
Pd-mediated aromatic bromination is intriguing to synthetic and organometallic chemists due to both its synthetic utility and, more importantly, a proposed mechanism involving an uncommon Pd(IV)/Pd(II) catalytic cycle. Here, we report an X-ray snapshot observation of a Pd reaction center during a Pd-mediated aromatic bromination in a single crystal of a porous coordination network crystalline scaffold. Upon treatment of a single crystal with N-bromosuccinimide, sequential X-ray snapshots revealed that the aryl-Pd(II)-L species embedded in the network pores was converted to the brominated aryl product through a transient aryl-Pd(II)-Br species, which is normally unobservable because of its r…