Search results for "Parallel"
showing 10 items of 667 documents
Pan-cancer analysis of whole genomes
2020
Publisher's version (útgefin grein)
Non-reversible Monte Carlo simulations of spin models
2011
Abstract Monte Carlo simulations are used to study simple systems where the underlying Markov chain satisfies the necessary condition of global balance but does not obey the more restrictive condition of detailed balance. Here, we show that non-reversible Markov chains can be set up that generate correct stationary distributions, but reduce or eliminate the diffusive motion in phase space typical of the usual Monte Carlo dynamics. Our approach is based on splitting the dynamics into a set of replicas with each replica representing a biased movement in reaction-coordinate space. This introduction of an additional bias in a given replica is compensated for by choosing an appropriate dynamics …
Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures
2016
We report on the comparison between the computational and experimental determination of electronic circular dichroism spectra of different guanine quadruplexes obtained from human telomeric sequences. In particular the difference between parallel, antiparallel, and hybrid structures is evidenced, as well as the induction of transitions between the polymorphs depending on the solution environment. Extensive molecular dynamics simulations (MD) are used to probe the conformational space of the different quadruplexes, and subsequently state-of-the-art hybrid quantum mechanics/molecular mechanics (QM/MM) techniques coupled with excitonic semiempirical Hamiltonian are used to simulate the macromo…
Simulation of Models for the Glass Transition: Is There Progress?
2002
The glass transition of supercooled fluids is a particular challenge for computer simulation, because the (longest) relaxation times increase by about 15 decades upon approaching the transition temperature T g. Brute-force molecular dynamics simulations, as presented here for molten SiO2 and coarse-grained bead-spring models of polymer chains, can yield very useful insight about the first few decades of this slowing down. Hence this allows to access the temperature range around T c of the so-called mode coupling theory, whereas the dynamics around the experimental glass transition is completely out of reach. While methods such as “parallel tempering” improve the situation somewhat, a method…
Photorefractive detection of antiparallel ferroelectric domains in BaTiO 3 and BaTiO 3 :Co crystals
1998
An all-optical method involving one coherent beam of light and based on photorefractive wave mixing is used to reveal antiparallel ferroelectric domains in one pure, and two cobalt-doped, barium titanate crystals (BaTiO 3 ). Rod-shaped domains with square cross sections are revealed.
Columnar phases from semi-discoid molecules. Phase induction via hydrogen bonding and charge transfer interactions
1991
Abstract To investigate the non-linear optical properties of nitrophenylhydrazones, a series of 4-nitro- and 2,4-dinitrophenylhydrazones of substituted aromatic aldehydes were synthesized. It was found that many of the dinitrophenythydrazone derivatives are liquid-crystalline and X-ray investigations show that the mesophase corresponds to a hexagonal columnar structure. To explain this unusual behaviour it is necessary to assume that a mesogenic structure is formed by intramolecular hydrogen bonding of the dinitrophenylhydrazones. Charge transfer induced antiparallel alignment of these moleculer dipoles leads to discoid structures, forming the columnar phases.
Noncovalent force spectroscopy using wide-field optical and diamond-based magnetic imaging
2019
A realization of the force-induced remnant magnetization spectroscopy (FIRMS) technique of specific biomolecular binding is presented where detection is accomplished with wide-field optical and diamond-based magnetometry using an ensemble of nitrogen-vacancy (NV) color centers. The technique may be adapted for massively parallel screening of arrays of nanoscale samples.
Fracture resistance of tooth restored with four glass fiber post systems of varying surface geometries-An in vitro study
2016
Background The purpose of this study was to relate the fracture resistance of endodontically treated teeth in relation to post geometry. Material and methods Forty single rooted mandibular premolars were instrumented by step - back technique and obturated by lateral condensation. Forty teeth were randomly divided into four groups: Reforpost glass fiber X-ray®, RelyX®, Exacto conical® and Parapost Fiber Lux®. The post spaces were prepared using respective drills and luted. The core build up was done and metal crowns were luted. Fracture resistance was determined in universal testing machine. The statistical analysis was done using one way ANOVA and post hoc Tukey Kramer test. Results The tee…
Analysis of multipactor RF breakdown in a waveguide containing a transversely magnetized ferrite
2016
In this paper, the multipactor RF breakdown in a parallel-plate waveguide partially filled with a ferrite slab magnetized normal to the metallic plates is studied. An external magnetic field is applied along the vertical direction between the plates in order to magnetize the ferrite. Numerical simulations using an in-house 3-D code are carried out to obtain the multipactor RF voltage threshold in this kind of structures. The presented results show that the multipactor RF voltage threshold at certain frequencies becomes considerably lower than for the corresponding classical metallic parallel-plate waveguide with the same vacuum gap
Carrier transport mechanism in the SnO(2):F/p-type a-Si:H heterojunction
2011
We characterize SnO(2):F/p-type a-Si:H/Mo structures by current-voltage (I-V) and capacitance-voltage (C-V) measurements at different temperatures to determine the transport mechanism in the SnO2:F/p-type a-Si:H heterojunction. The experimental I-V curves of these structures, almost symmetric around the origin, are ohmic for vertical bar V vertical bar< 0:1 V and have a super-linear behavior (power law) for vertical bar V vertical bar < 0:1 V. The structure can be modeled as two diodes back to back connected so that the main current transport mechanisms are due to the reverse current of the diodes. To explain the measured C-V curves, the capacitance of the heterostructure is modeled as the …