Search results for "Parameter space"
showing 10 items of 182 documents
An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors
2012
[EN] In this paper, a revised version of the Morris approach, which includes an improved sampling strategy based on trajectory design, has been adapted to the screening of the most influential parameters of a fuzzy controller applied to WWTPs. Due to the high number of parameters, a systematic approach has been proposed to apply this improved sampling strategy with low computational demand. In order to find out the proper repetition number of elementary effects of each input factor on model output (EEi) calculations, an iterative and automatic procedure has been applied. The results show that the sampling strategy has a significant effect on the parameter significance ranking and that rando…
Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on a longitudinally polarized deuterium target
2010
Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle $\phi$ around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization ar…
Is it possible to explore Peccei-Quinn axions from frequency dependence radiation dimming?
2011
Abstract We explore how the Peccei–Quinn (PQ) axion parameter space can be constrained by the frequency-dependence dimming of radiation from astrophysical objects. To do so we perform accurate calculations of photon–axion conversion in the presence of a variable magnetic field. We propose several tests where the PQ axion parameter space can be explored with current and future astronomical surveys: the observed spectra of isolated neutron stars, occultations of background objects by white dwarfs and neutron stars, the light-curves of eclipsing binaries containing a white dwarf. We find that the lack of dimming of the light-curve of a detached eclipsing white dwarf binary recently observed, l…
Critical point Higgs inflation in the Palatini formulation
2021
We study Higgs inflation in the Palatini formulation with the renormalisation group improved potential in the case when loop corrections generate a feature similar to an inflection point. Assuming that there is a threshold correction for the Higgs quartic coupling $\lambda$ and the top Yukawa coupling $y_t$, we scan the three-dimensional parameter space formed by the two jumps and the non-minimal coupling $\xi$. The spectral index $n_s$ can take any value in the observationally allowed range. The lower limit for the running is $\alpha_s>-3.5\times10^{-3}$, and $\alpha_s$ can be as large as the observational upper limit. Running of the running is small. The tensor-to-scalar ratio is $2.2\tim…
Fitting flavour symmetries: the case of two-zero neutrino mass textures
2018
We present a numeric method for the analysis of the fermion mass matrices predicted in flavour models. The method does not require any previous algebraic work, it offers a $\chi^{2}$ comparison test and an easy estimate of confidence intervals. It can also be used to study the stability of the results when the predictions are disturbed by small perturbations. We have applied the method to the case of two-zero neutrino mass textures using the latest available fits on neutrino oscillations, derived the available parameter space for each texture and compared them. Textures $A_{1}$ and $A_{2}$ seem favoured because they give a small $\chi^{2}$, allow for large regions in parameter space and giv…
Size of the dark side of the solar neutrino parameter space
2000
We present an analysis of the MSW neutrino oscillation solutions of the solar neutrino problem in the framework of two-neutrino mixing in the enlarged parameter space $(\ensuremath{\Delta}{m}^{2},{\mathrm{tan}}^{2}\ensuremath{\theta})$ with $\ensuremath{\theta}\ensuremath{\in}(0,\ensuremath{\pi}/2).$ Recently, it was pointed out that the allowed region of parameters from a fit to the measured total rates can extend to values $\ensuremath{\theta}g~\ensuremath{\pi}/4$ (the so-called ``dark side'') when higher confidence levels are allowed. The purpose of this Rapid Communication is to reanalyze the problem, including all the solar neutrino data available, to discuss the dependence on the stat…
Global three-neutrino oscillation analysis of neutrino data
2001
A global analysis of the solar, atmospheric and reactor neutrino data is presented in terms of three-neutrino oscillations. We include the most recent solar neutrino rates of Homestake, SAGE, GALLEX and GNO, as well as the recent 1117 day Super-Kamiokande data sample, including the recoil electron energy spectrum both for day and night periods and we treat in a unified way the full parameter space for oscillations, correctly accounting for the transition from the matter enhanced (MSW) to the vacuum oscillations regime. Likewise, we include in our description conversions with $\theta_{12} > \pi/4$. For the atmospheric data we perform our analysis of the contained events and the upward-going …
Search for events with large missing transverse momentum, jets, and at least two tau leptons in 7 TeV proton–proton collision data with the ATLAS det…
2012
A search for events with large missing transverse momentum, jets, and at least two tau leptons has been performed using 2 fb[superscript −1] of proton–proton collision data at √s = 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set, where the visible cross section is defined by the product of cross section, branching fraction, detector acceptance and event selection efficiency. A 95% CL lower limit of 32 TeV is set on the gauge-mediated supersymmetry breaking (GMSB) scale Λ independent of tan β. These limits provide the most s…
The Dispirited Case of Gauged $U(1)_{B-L}$ Dark Matter
2018
We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged $U(1)_{B-L}$ symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonance. Additionally, the very strong constraints from high-energy dilepton searches fully exclude the model for $ 150 \, \text{GeV} < m_{Z'} < 3 \, \text{TeV}$. We further explore the phenomenology in the high mass region (i.e. masses $\gtrsim \mathcal{O}(1) \, \text{TeV}$) and highlight theoret…
LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model
2018
Contrary to the see-saw models, extended Higgs sectors leading to radiatively-induced neutrino masses do require the extra particles to be at the TeV scale. However, these new states have often exotic decays, to which experimental LHC searches performed so far, focused on scalars decaying into pairs of same-sign leptons, are not sensitive. In this paper we show that their experimental signatures can start to be tested with current LHC data if dedicated multi-region analyses correlating different observables are used. We also provide high-accuracy estimations of the complicated Standard Model backgrounds involved. For the case of the Zee-Babu model, we show that regions not yet constrained b…