Search results for "Partial differential equation"
showing 10 items of 326 documents
Multiplicity results for a class of asymmetric weakly coupled systems of second order ordinary differential equations
2005
We prove the existence and multiplicity of solutions to a two-point boundary value problem associated to a weakly coupled system of asymmetric second-order equations. Applying a classical change of variables, we transform the initial problem into an equivalent problem whose solutions can be characterized by their nodal properties. The proof is developed in the framework of the shooting methods and it is based on some estimates on the rotation numbers associated to each component of the solutions to the equivalent system.
On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids
2007
In this paper we discuss a system of partial differential equations describing the steady flow of an incompressible fluid and prove the existence of a strong solution under suitable assumptions on the data. In the 2D-case this solution turns out to be of class C^{1,\alpha}.
Existence of dynamical low-rank approximations to parabolic problems
2021
The existence and uniqueness of weak solutions to dynamical low-rank evolution problems for parabolic partial differential equations in two spatial dimensions is shown, covering also non-diagonal diffusion in the elliptic part. The proof is based on a variational time-stepping scheme on the low-rank manifold. Moreover, this scheme is shown to be closely related to practical methods for computing such low-rank evolutions.
Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations
2014
Abstract Ran and Reurings (Proc. Am. Math. Soc. 132(5):1435-1443, 2004) proved an analog of the Banach contraction principle in metric spaces endowed with a partial order and discussed some applications to matrix equations. The main novelty in the paper of Ran and Reurings involved combining the ideas in the contraction principle with those in the monotone iterative technique. Motivated by this, we present some common fixed point results for a pair of fuzzy mappings satisfying an almost generalized contractive condition in partially ordered complete metric spaces. Also we give some examples and an application to illustrate our results. MSC:46S40, 47H10, 34A70, 54E50.
Singular integrals and rectifiability
2002
We shall discuss singular integrals on lower dimensional subsets of Rn. A survey of this topic was given in [M4]. The first part of this paper gives a quick review of some results discussed in [M4] and a survey of some newer results and open problems. In the second part we prove some results on the Riesz kernels in Rn. As far as I know, they have not been explicitly stated and proved, but they are very closely related to some earlier results and methods. [Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].
A probabilistic Weitzenböck formula on Riemannian path space
2000
Local regularity for quasi-linear parabolic equations in non-divergence form
2018
Abstract We consider viscosity solutions to non-homogeneous degenerate and singular parabolic equations of the p -Laplacian type and in non-divergence form. We provide local Holder and Lipschitz estimates for the solutions. In the degenerate case, we prove the Holder regularity of the gradient. Our study is based on a combination of the method of alternatives and the improvement of flatness estimates.
Oscillation criteria for even-order neutral differential equations
2016
Abstract We study oscillatory behavior of solutions to a class of even-order neutral differential equations relating oscillation of higher-order equations to that of a pair of associated first-order delay differential equations. As illustrated with two examples in the final part of the paper, our criteria improve a number of related results reported in the literature.
A parabolic hemivariational inequality
1996
The factorization method for real elliptic problems
2006
The Factorization Method localizes inclusions inside a body from mea- surements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering sym- metric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfi…