6533b86cfe1ef96bd12c8375
RESEARCH PRODUCT
Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations
Hemant Kumar NashinePoom KumamWiyada KumamCalogero Vetrosubject
Algebra and Number Theoryfuzzy mappingApplied MathematicsFixed-point theoremFuzzy logicComplete metric spaceAlgebraMetric spaceSettore MAT/05 - Analisi Matematicacomplete metric spaceordinary fuzzy differential equationaltering distance functionContraction principleC0-semigroupDifferential algebraic equationAnalysisNumerical partial differential equationsMathematicsdescription
Abstract Ran and Reurings (Proc. Am. Math. Soc. 132(5):1435-1443, 2004) proved an analog of the Banach contraction principle in metric spaces endowed with a partial order and discussed some applications to matrix equations. The main novelty in the paper of Ran and Reurings involved combining the ideas in the contraction principle with those in the monotone iterative technique. Motivated by this, we present some common fixed point results for a pair of fuzzy mappings satisfying an almost generalized contractive condition in partially ordered complete metric spaces. Also we give some examples and an application to illustrate our results. MSC:46S40, 47H10, 34A70, 54E50.
year | journal | country | edition | language |
---|---|---|---|---|
2014-08-20 | Advances in Difference Equations |