Fixed Points for Weakα-ψ-Contractions in Partial Metric Spaces
Recently, Samet et al. (2012) introduced the notion ofα-ψ-contractive mappings and established some fixed point results in the setting of complete metric spaces. In this paper, we introduce the notion of weakα-ψ-contractive mappings and give fixed point results for this class of mappings in the setting of partial metric spaces. Also, we deduce fixed point results in ordered partial metric spaces. Our results extend and generalize the results of Samet et al.
Best proximity point results for modified α-proximal C-contraction mappings
First we introduce new concepts of contraction mappings, then we establish certain best proximity point theorems for such kind of mappings in metric spaces. Finally, as consequences of these results, we deduce best proximity point theorems in metric spaces endowed with a graph and in partially ordered metric spaces. Moreover, we present an example and some fixed point results to illustrate the usability of the obtained theorems. MSC:46N40, 46T99, 47H10, 54H25.
Fixed points for weak alpha-psi-contractions in partial metric spaces
Recently, Samet et al. (2012) introduced the notion of $\alpha $ - $\psi $ -contractive mappings and established some fixed point results in the setting of complete metric spaces. In this paper, we introduce the notion of weak $\alpha $ - $\psi $ -contractive mappings and give fixed point results for this class of mappings in the setting of partial metric spaces. Also, we deduce fixed point results in ordered partial metric spaces. Our results extend and generalize the results of Samet et al.
Best proximity point theorems for rational proximal contractions
Abstract We provide sufficient conditions which warrant the existence and uniqueness of the best proximity point for two new types of contractions in the setting of metric spaces. The presented results extend, generalize and improve some known results from best proximity point theory and fixed-point theory. We also give some examples to illustrate and validate our definitions and results. MSC:41A65, 46B20, 47H10.
Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces
Abstract We prove some coincidence and common fixed point results for three mappings satisfying a generalized weak contractive condition in ordered partial metric spaces. As application of the presented results, we give a unique fixed point result for a mapping satisfying a weak cyclical contractive condition. We also provide some illustrative examples. MSC:47H10, 54H25.
Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations
Abstract Ran and Reurings (Proc. Am. Math. Soc. 132(5):1435-1443, 2004) proved an analog of the Banach contraction principle in metric spaces endowed with a partial order and discussed some applications to matrix equations. The main novelty in the paper of Ran and Reurings involved combining the ideas in the contraction principle with those in the monotone iterative technique. Motivated by this, we present some common fixed point results for a pair of fuzzy mappings satisfying an almost generalized contractive condition in partially ordered complete metric spaces. Also we give some examples and an application to illustrate our results. MSC:46S40, 47H10, 34A70, 54E50.
On modified α-ϕ-fuzzy contractive mappings and an application to integral equations
Abstract We introduce the notion of a modified α-ϕ-fuzzy contractive mapping and prove some results in fuzzy metric spaces for such kind of mappings. The theorems presented provide a generalization of some interesting results in the literature. Two examples and an application to integral equations are given to illustrate the usability of our theory.