Search results for "Particle size"
showing 10 items of 631 documents
Influence of lipid physical state on the in vitro digestibility of emulsified lipids.
2008
The objective of this study was to investigate the influence of the physical state of emulsified lipids on their in vitro digestibility by pancreatic lipase. A 10 wt % tripalmitin oil-in-water emulsion stabilized by sodium dodecyl sulfate (0.9 wt % SDS) was prepared at a temperature (>70 degrees C) above the melting point of the lipid phase (T(m) approximately 60 degrees C). A portion of this emulsion was cooled to a temperature (0 degrees C for 15 min) well below the crystallization temperature of the emulsified lipid (T(c) approximately 22 degrees C) and then warmed to 37 degrees C so as to have completely solid lipid particles. Another portion of the emulsion was directly cooled from 70 …
Hierarchical Mass Transfer Analysis of Drug Particle Dissolution, Highlighting the Hydrodynamics, pH, Particle Size, and Buffer Effects for the Disso…
2020
Dissolution is a crucial process for the oral delivery of drug products. Before being absorbed through epithelial cell membranes to reach the systemic circulation, drugs must first dissolve in the human gastrointestinal (GI) tract. In vivo and in vitro dissolutions are complex because of their dependency upon the drug physicochemical properties, drug product, and GI physiological properties. However, an understanding of this process is critical for the development of robust drug products. To enhance our understanding of in vivo and in vitro dissolutions, a hierarchical mass transfer (HMT) model was developed that considers the drug properties, GI fluid properties, and fluid hydrodynamics. T…
Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals
2018
The purpose of this study was to evaluate the effect of charge on the in vitro drug performances of clarithromycin nanocrystals. To prepare different charges of nanocrystals, media milling was employed with the use of different stabilizing systems. The uncharged nanocrystals were prepared from poloxamer 407. The negatively and positively charged nanocrystals were stabilized using a combination of poloxamer 407 with sodium lauryl sulfate (SLS) and cetyltrimethylammonium bromide (CTAB), respectively. After production, the particle size of the negatively and positively charged nanocrystals was smaller than that of the uncharged one. The similar particle size of variously charged clarithromycin…
Retinol encapsulated into amorphous Ca2+ polyphosphate nanospheres acts synergistically in MC3T3-E1 cells
2015
Both the quality and quantity of collagen, the major structural component of the skin, decrease in aging skin. We succeeded to encapsulate retinol into amorphous inorganic polyphosphate (polyP) nanoparticles together with calcium ions ("aCa-polyP-NP"), under formation of amorphous Ca-polyP/retinol nanospheres ("retinol/aCa-polyP-NS"). The globular nanospheres are not cytotoxic, show an almost uniform size of ≈ 45 nm and have a retinol content of around 25%. Both components of those nanospheres, retinol and the aCa-polyP-NP, if administered together, caused a strong increase in proliferation of mouse calvaria MC3T3 cells. The expressions of collagen types I, II and III genes, but not the exp…
Determination of hexacelsian by infrared spectroscopy.
1984
Hexacelsian has been determined by infrared spectroscopy with KBr discs and K(4)Fe(CN)(6) as internal standard. A KBr particle size of40 mum gave better homogenization of the sample-KBr mixture than a particle size in the 40-70 mum range. For determinations of hexacelsian in synthetic samples containing amorphous phase or celsian, calibration curves were constructed. A least-squares fit yielded correlation coefficients of 0.998 and 0.997.
Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters
2009
Finely dispersed nanometre-scale gold particles are known to catalyse several oxidation reactions in aerobic, ambient conditions. The catalytic activity has been explained by various complementary mechanisms, including support effects, particle-size-dependent metal-insulator transition, charging effects, frontier orbital interactions and geometric fluxionality. We show, by considering a series of robust and structurally well-characterized ligand-protected gold clusters with diameters between 1.2 and 2.4 nm, that electronic quantum size effects, particularly the magnitude of the so-called HOMO-LUMO energy gap, has a decisive role in binding oxygen to the nano-catalyst in an activated form. T…
On the electrophoretic mobility of isolated colloidal spheres
2004
We studied the electrophoretic mobility μ of highly charged colloidal spheres in very dilute low salt aqueous suspension. We combined experiments on individual particles and ensemble averaged measurements. In both cases μ was observed to be independent of particle size and surface chemistry. Corresponding effective charges Zμ*, however, scaled with the ratio of particle size to Bjerrum length λB: Zμ* = Aa/λB with a coefficient . Our results are discussed in comparison to other charge determination experiments and charge renormalization theory and with respect to the issue of charge polydispersity.
Photoinduced phenomena in corona poled polar organic films.
2005
Abstract Organic materials have received considerable attention because of their large dipole moments and optical nonlinearities. The optically induced switching of material properties is important for studying the optoelectronic effects including second harmonic generation. Organic materials for photonic applications contain chromophore dipole which consist of acceptor and donor groups bridged by a delocalized π-electron system. Both theoretical and experimental data show a reversible highly dipolar photoinduced intra molecular charge transfer in betaine type molecules accompanied by change of the sign and the value of the dipole moment. The arrangement of polar molecules in films is studi…
Gold catalysts supported on CeO2 and CeO2–Al2O3 for NO reduction by CO
2006
Abstract The reduction of NO x by CO was studied over gold catalyst supported on ceria and ceria–alumina. The mixed supports with different CeO 2 /Al 2 O 3 ratios were prepared by co-precipitation. The catalysts were characterized by means of XRD, TPR, XPS and Raman spectroscopy. The addition of alumina led to a slight enlargement of the gold particles, while the ceria particle size was decreased. Deeper oxygen vacancies formation in the presence of alumina was detected by TPR, XPS and Raman spectroscopy, compared to the pure ceria support. The samples exhibited a high and stable activity and 100% selectivity towards N 2 was reached at 200 °C.
A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots
2014
The time resolved UV-fluorescence in ZnO quantum dots has been investigated using femtosecond laser spectroscopy. The measurements were performed as a function of particle size for particles between 3 and 7 nm in diameter, which are in the quantum confined regime. A red shift in the fluorescence maximum is seen while increasing the particle size, which correlates with the shift in band gap due to quantum confinement. The energy difference between the UV-fluorescence and the band gap does, however, increase for the smaller particles. For 3.7 nm particles the fluorescence energy is 100 meV smaller than the band gap energy, whereas it is only 20 meV smaller for the largest particles. This indi…