Search results for "Patch-clamp"

showing 10 items of 85 documents

Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level

2014

Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to …

Olfactory systemPatch-Clamp TechniquessourisReceptors Odorant[ SDV.BA ] Life Sciences [q-bio]/Animal biologybiologie neurosensorielleMembrane Potentials0302 clinical medicinemolecular biology[SDV.BDD]Life Sciences [q-bio]/Development BiologydéveloppementAnimal biology0303 health scienceseducation.field_of_studyNeuronal PlasticityGeneral Neuroscience[SDV.BA]Life Sciences [q-bio]/Animal biologyBiologie du développementArticlesOlfactory BulbDevelopment BiologySmellmedicine.anatomical_structureélectrophysiologie[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]development;développement;electrophysiology;électrophysiologie;mice;souris;molecular biology;biologie moléculaire;olfaction;plasticity;plasticiténeurone récepteur olfactifolfactionmiceGreen Fluorescent ProteinsPopulationMice Transgenicneurone olfactifSensory systemOlfactionBiologybiologie moléculaireOlfactory Receptor Neurons03 medical and health sciencesOlfactory mucosaBiologie animalemedicineAnimalsOlfactory Transduction Pathway[ SDV.BDD ] Life Sciences [q-bio]/Development Biologyeducationdevelopment030304 developmental biologyOlfactory receptorplasticitéNeuroscienceselectrophysiologyElectrooculographyAnimals NewbornGene Expression RegulationNeurons and Cognitionplasticity[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]OdorantsNeuroscienceOlfactory epithelium030217 neurology & neurosurgery
researchProduct

Capsaicin differentially modulates voltage-activated calcium channel currents in dorsal root ganglion neurones of rats

2005

It is discussed whether capsaicin, an agonist of the pain mediating TRPV1 receptor, decreases or increases voltage-activated calcium channel (VACC) currents (ICa(V)). ICa(V) were isolated in cultured dorsal root ganglion (DRG) neurones of rats using the whole cell patch clamp method and Ba 2+ as charge carrier. In large diameter neurones (>35Am), a concentration of 50AM was needed to reduce ICa(V) (activated by depolarizations to 0 mV) by 80%, while in small diameter neurones (30Am), the IC50 was 0.36 AM. This effect was concentration dependent with a threshold below 0.025 AM and maximal blockade (>80%) at 5AM. The current–voltage relation was shifted to the hyperpolarized direction with an…

Pain ThresholdPatch-Clamp TechniquesTRPV1TRPV Cation ChannelsN-type calcium channelSecond Messenger SystemsMembrane PotentialsGanglia SpinalAnimalsL-type calcium channelPatch clampRats WistarMolecular BiologyCell SizeNeuronsDose-Response Relationship DrugVoltage-dependent calcium channelChemistryGeneral NeuroscienceCalcium channelT-type calcium channelCalciseptineAnatomyRatsRats Inbred LewBiophysicsCalcium ChannelsNeurology (clinical)CapsaicinSignal TransductionDevelopmental BiologyBrain Research
researchProduct

Alterations in membrane and firing properties of layer 2/3 pyramidal neurons following focal laser lesions in rat visual cortex.

2013

Focal cortical injuries are well known to cause changes in function and excitability of the surviving cortical areas but the cellular correlates of these physiological alterations are not fully understood. In the present study we employed a well established ex vivo-in vitro model of focal laser lesions in the rat visual cortex and we studied membrane and firing properties of the surviving layer 2/3 pyramidal neurons. Patch-clamp recordings, performed in the first week post-injury, revealed an increased input resistance, a depolarized spike threshold as well as alterations in the firing pattern of neurons in the cortex ipsilateral to the lesion. Notably, the reported lesion-induced alteratio…

Patch-Clamp TechniquesAction PotentialsGABAB receptorBiologyIn Vitro TechniquesSynaptic TransmissionGlutamatergicchemistry.chemical_compoundCortex (anatomy)Biological neural networkmedicineDNQXAnimalsRats Long-EvansVisual CortexMembrane potentialNeuronsGABAA receptorGeneral NeuroscienceLasersPyramidal CellsCell MembraneElectrophysiological PhenomenaRatsVisual cortexmedicine.anatomical_structurechemistryData Interpretation StatisticalSynapsesNeuroscienceNeuroscience
researchProduct

Modelling the spatial and temporal constrains of the GABAergic influence on neuronal excitability

2021

GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs. These simulations revealed for GABAe…

Patch-Clamp TechniquesAction potentialPhysiologyAction PotentialsSynaptic TransmissionNervous SystemBiochemistryMiceNerve FibersAnimal CellsMedicine and Health SciencesGABAergic NeuronsBiology (General)gamma-Aminobutyric AcidNeuronsMembrane potentialEcologyChemistryPyramidal CellsDepolarizationNeurochemistryNeurotransmittersCA3 Region HippocampalElectrophysiologyReceptors GlutamateComputational Theory and MathematicsModeling and SimulationExcitatory postsynaptic potentialGABAergicAnatomyCellular TypesShunting inhibitionResearch Articlemedicine.drugQH301-705.5Models NeurologicalNeurophysiologyAMPA receptorMembrane Potentialgamma-Aminobutyric acidCellular and Molecular NeuroscienceGlutamatergicSpatio-Temporal AnalysisGeneticsmedicineAnimalsComputer SimulationReceptors AMPAReversal potentialMolecular BiologyEcology Evolution Behavior and SystematicsComputational BiologyBiology and Life SciencesNeural InhibitionDendritesCell BiologyNeuronal DendritesAxonsMice Inbred C57BLAnimals Newbornnervous systemCellular NeuroscienceSynapsesDepolarizationNeuroscienceNeurosciencePLOS Computational Biology
researchProduct

GABA-A Receptors Regulate Neocortical Neuronal Migration In Vitro and In Vivo

2006

The cortical migration process depends on a number of trophic factors and on the activation of different voltage- and ligand-gated channels. We investigated the role of gamma-aminobutyric acid (GABA) type A receptors in the neuronal migration process of the newborn rat parietal cortex in vivo and in vitro. Local in vivo application of the GABA-A antagonist bicuculline methiodide (BMI) or the agonist muscimol via cortical surface Elvax implants induced prominent alterations in the cortical architecture when compared with untreated or sham-operated controls. BMI- and muscimol-treated animals revealed heterotopic cell clusters in the upper layers and a complete loss of the cortical lamination …

Patch-Clamp TechniquesAntimetabolitesCognitive NeuroscienceNeocortexIn Vitro TechniquesBiologyBicucullineReceptors N-Methyl-D-Aspartategamma-Aminobutyric acidGABA AntagonistsCellular and Molecular Neurosciencechemistry.chemical_compoundCell MovementPostsynaptic potentialGlial Fibrillary Acidic ProteinmedicineAnimalsRats WistarReceptorGABA AgonistsDrug ImplantsNeuronsMuscimolGABAA receptorBicucullineReceptors GABA-AImmunohistochemistryRatsCell biologyElectrophysiologyKineticsmedicine.anatomical_structureAnimals NewbornBromodeoxyuridinenervous systemMuscimolchemistryCerebral cortexGABAergicCalciumNeurosciencemedicine.drugCerebral Cortex
researchProduct

Postsynaptic NO/cGMP Increases NMDA Receptor Currents via Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in the Hippocampus

2013

The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling cascade participates in the modulation of synaptic transmission. The effects of NO are mediated by the NO-sensitive cGMP-forming guanylyl cyclases (NO-GCs), which exist in 2 isoforms with indistinguishable regulatory properties. The lack of long-term potentiation (LTP) in knock-out (KO) mice deficient in either one of the NO-GC isoforms indicates the contribution of both NO-GCs to LTP. Recently, we showed that the NO-GC1 isoform is located presynaptically in glutamatergic neurons and increases the glutamate release via hyperpolarization-activated cyclic nucleotide (HCN)-gated channels in the hippocampus. Electrophysiologi…

Patch-Clamp TechniquesCognitive NeuroscienceLong-Term PotentiationIn Vitro TechniquesNeurotransmissionNitric OxideReceptors N-Methyl-D-AspartateMiceCellular and Molecular Neurosciencechemistry.chemical_compoundCyclic nucleotidePostsynaptic potentialHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsHCN channelAnimalsAnesthetics LocalCA1 Region HippocampalCyclic GMPCyclic guanosine monophosphateMice KnockoutNeuronsbiologyLidocaineTetraethylammoniumLong-term potentiationHyperpolarization (biology)Electric StimulationPyrimidinesAnimals Newbornnervous systemchemistryGuanylate CyclaseBiophysicsbiology.proteinNMDA receptorExcitatory Amino Acid AntagonistsNeuroscienceCerebral Cortex
researchProduct

Synaptopodin regulates denervation-induced homeostatic synaptic plasticity

2013

Synaptopodin (SP) is a marker and essential component of the spine apparatus (SA), an enigmatic cellular organelle composed of stacked smooth endoplasmic reticulum that has been linked to synaptic plasticity. However, SP/SA-mediated synaptic plasticity remains incompletely understood. To study the role of SP/SA in homeostatic synaptic plasticity we here used denervation-induced synaptic scaling of mouse dentate granule cells as a model system. This form of plasticity is of considerable interest in the context of neurological diseases that are associated with the loss of neurons and subsequent denervation of connected brain regions. In entorhino-hippocampal slice cultures prepared from SP-de…

Patch-Clamp TechniquesDendritic SpinesGreen Fluorescent ProteinsNonsynaptic plasticityMice TransgenicTetrodotoxinBiologyIn Vitro TechniquesHippocampusReceptors N-Methyl-D-AspartateMiceHomeostatic plasticitySynaptic augmentationMetaplasticityAnimalsEntorhinal CortexHomeostasisPromoter Regions GeneticMultidisciplinarySynaptic scalingNeuronal PlasticityMicrofilament ProteinsRyanodine Receptor Calcium Release ChannelBiological SciencesDenervationSpine apparatusMice Inbred C57BLSynaptic fatigueSynaptic plasticityDentate GyrusSynapsesCalcium ChannelsNeuroscience
researchProduct

The expression level of the orphan nuclear receptor GCNF (germ cell nuclear factor) is critical for neuronal differentiation.

2004

The germ cell nuclear factor (GCNF) is essential for normal embryonic development and gametogenesis. To test the prediction that GCNF is additionally required for neuronal differentiation, we used the mouse embryonal carcinoma cell line PCC7-Mz1, which represents an advantageous model to study neuronal cells from the stage of fate choice until the acquirement of functional competence. We generated stable transfectants that express gcnf sense or antisense RNA under the control of a tetracycline-regulated promoter. After retinoic acid-induced withdrawal from the cell cycle, sense clones developed a neuron network with changed properties, and the time course of neuron maturation was shortened.…

Patch-Clamp TechniquesGerm cell nuclear factorSynaptophysinDown-RegulationGene ExpressionReceptors Cytoplasmic and NuclearNerve Tissue ProteinsTretinoinBiologyNestinMiceEndocrinologyGAP-43 ProteinIntermediate Filament ProteinsNuclear Receptor Subfamily 6 Group A Member 1AnimalsRNA AntisenseMolecular BiologyNeuronsCell CycleCell PolarityCell DifferentiationGeneral MedicineCell cycleNestinCell biologyUp-RegulationNeuroepithelial cellDNA-Binding Proteinsnervous systemNeuron maturationSynaptophysinbiology.proteinNeuron differentiationStem cellMicrotubule-Associated ProteinsMolecular endocrinology (Baltimore, Md.)
researchProduct

A subset of ventral tegmental area dopamine neurons responds to acute ethanol

2015

The mechanisms by which alcohol drinking promotes addiction in humans and self-administration in rodents remain obscure, but it is well known that alcohol can enhance dopamine (DA) neurotransmission from neurons of the ventral tegmental area (VTA) and increase DA levels within the nucleus accumbens and prefrontal cortex. We recorded from identified DA neuronal cell bodies within ventral midbrain slices prepared from a transgenic mouse line (TH-GFP) using long-term stable extracellular recordings in a variety of locations and carefully mapped the responses to applied ethanol (EtOH). We identified a subset of DA neurons in the medial VTA located within the rostral linear and interfascicular n…

Patch-Clamp TechniquesGreen Fluorescent ProteinsAction PotentialsMice TransgenicNucleus accumbensNeurotransmissionArticleTissue Culture TechniquesMidbrainQuinpiroleDopamineDopamine receptor D2mental disordersmedicineAnimalsDose-Response Relationship DrugEthanolChemistryDopaminergic NeuronsGeneral NeuroscienceVentral Tegmental AreaCentral Nervous System DepressantsMice Inbred C57BLVentral tegmental areamedicine.anatomical_structurenervous systemNeuronNeurosciencemedicine.drugNeuroscience
researchProduct

Identification and functional expression of HCx31.9, a novel gap junction gene

2002

By combining in silico and bench molecular biology methods we have identified a novel human gap junction gene that encodes a protein designated HCx31.9. We have determined its human chromosomal location and gene structure, and we have identified a putative mouse ortholog, mCx30.2. We have observed the presence of HCx31.9 in human cerebral cortex, liver, heart, spleen, lung, and kidney and the presence of mCx30.2 in mouse cerebral cortex, liver and lung. Moreover, preliminary data on the electrophysiological properties of HCx31.9 have been obtained by functional expression in paired Xenopus oocytes and in transfected N2A cells.

Patch-Clamp TechniquesIn silicoMolecular Sequence DataClinical BiochemistryXenopuscloningGene ExpressionConnexinConnexinsCell Linegap junctionMiceXenopus laevisGene expressionmedicineAnimalsHumansTissue DistributionAmino Acid SequenceCloning MolecularGenePhylogenybiologycloning; CNS; gap junctionGap junctionGap JunctionsCell BiologyGeneral MedicineTransfectionbiology.organism_classificationMolecular biologymedicine.anatomical_structureCerebral cortexOocytesCNSSequence Alignment
researchProduct