Search results for "Path Integral"
showing 10 items of 80 documents
Path integral solution handled by Fast Gauss Transform
2009
Abstract The path integral solution method is an effective tool for evaluating the response of non-linear systems under Normal White Noise, in terms of probability density function (PDF). In this paper it has been observed that, using short-time Gaussian approximation, the PDF at a given time instant is the Gauss Transform of the PDF at an earlier close time instant. Taking full advantage of the so-called Fast Gauss Transform a new integration method is proposed. In order to overcome some unsatisfactory trends of the classical Fast Gauss Transform, a new version termed as Symmetric Fast Gauss Transform is also proposed. Moreover, extensions to the two Fast Gauss Transform to MDOF systems ar…
Path Integral Method for Nonlinear Systems Under Levy White Noise
2017
In this paper, the probabilistic response of nonlinear systems driven by alpha-stable Lévy white noises is considered. The path integral solution is adopted for determining the evolution of the probability density function of nonlinear oscillators. Specifically, based on the properties of alpha-stable random variables and processes, the path integral solution is extended to deal with Lévy white noises input with any value of the stability index alpha. It is shown that at the limit when the time increments tend to zero, the Einstein–Smoluchowsky equation, governing the evolution of the response probability density function, is fully restored. Application to linear and nonlinear systems under…
An Efficient Wiener Path Integral Technique Formulation for Stochastic Response Determination of Nonlinear MDOF Systems
2015
The recently developed approximate Wiener path integral (WPI) technique for determining the stochastic response of nonlinear/hysteretic multi-degree-of-freedom (MDOF) systems has proven to be reliable and significantly more efficient than a Monte Carlo simulation (MCS) treatment of the problem for low-dimensional systems. Nevertheless, the standard implementation of the WPI technique can be computationally cumbersome for relatively high-dimensional MDOF systems. In this paper, a novel WPI technique formulation/implementation is developed by combining the “localization” capabilities of the WPI solution framework with an appropriately chosen expansion for approximating the system response PDF…
Ideal and physical barrier problems for non-linear systems driven by normal and Poissonian white noise via path integral method
2016
Abstract In this paper, the probability density evolution of Markov processes is analyzed for a class of barrier problems specified in terms of certain boundary conditions. The standard case of computing the probability density of the response is associated with natural boundary conditions, and the first passage problem is associated with absorbing boundaries. In contrast, herein we consider the more general case of partially reflecting boundaries and the effect of these boundaries on the probability density of the response. In fact, both standard cases can be considered special cases of the general problem. We provide solutions by means of the path integral method for half- and single-degr…
An approximate technique for determining in closed-form the response transition probability density function of diverse nonlinear/hysteretic oscillat…
2019
An approximate analytical technique is developed for determining, in closed form, the transition probability density function (PDF) of a general class of first-order stochastic differential equations (SDEs) with nonlinearities both in the drift and in the diffusion coefficients. Specifically, first, resorting to the Wiener path integral most probable path approximation and utilizing the Cauchy–Schwarz inequality yields a closed-form expression for the system response PDF, at practically zero computational cost. Next, the accuracy of this approximation is enhanced by proposing a more general PDF form with additional parameters to be determined. This is done by relying on the associated Fokke…
Path Integral Methods for the Probabilistic Analysis of Nonlinear Systems Under a White-Noise Process
2020
Abstract In this paper, the widely known path integral method, derived from the application of the Chapman–Kolmogorov equation, is described in details and discussed with reference to the main results available in literature in several decades of contributions. The most simple application of the method is related to the solution of Fokker–Planck type equations. In this paper, the solution in the presence of normal, α-stable, and Poissonian white noises is first discussed. Then, application to barrier problems, such as first passage problems and vibroimpact problems is described. Further, the extension of the path integral method to problems involving multi-degrees-of-freedom systems is anal…
Laplace’s Method of Integration in the Path Integral Approach for the Probabilistic Response of Nonlinear Systems
2020
In this paper the response of nonlinear systems under stationary Gaussian white noise excitation is studied. The Path Integral (PI) approach, generally employed for evaluating the response Probability Density Function (PDF) of systems in short time steps based on the Chapman-Kolmogorov equation, is here used in conjunction with the Laplace’s method of integration. This yields an approximate analytical solution of the integral involved in the Chapman-Kolmogorov equation. Further, in this manner the repetitive integrations, generally required in the conventional numerical implementation of the procedure, can be circumvented. Application to a nonlinear system is considered, and pertinent compa…
Path integral method for first-passage probability determination of nonlinear systems under levy white noise
2015
In this paper the problem of the first-passage probabilities determination of nonlinear systems under alpha-stable Lévy white noises is addressed. Based on the properties of alpha-stable random variables and processes, the Path Integral method is extended to deal with nonlinear systems driven by Lévy white noises with a generic value of the stability index alpha. Furthermore, the determination of reliability functions and first-passage time probability density functions is handled step-by-step through a modification of the Path Integral technique. Comparison with pertinent Monte Carlo simulation reveals the excellent accuracy of the proposed method.
Response of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitations: A Path Integral approach based on La…
2023
In this paper, an approximate analytical technique is developed for determining the non-stationary response amplitude probability density function (PDF) of nonlinear/hysteretic oscillators endowed with fractional element and subjected to evolutionary excitations. This is achieved by a novel formulation of the Path Integral (PI) approach. Specifically, a stochastic averaging/linearization treatment of the original fractional order governing equation of motion yields a first-order stochastic differential equation (SDE) for the oscillator response amplitude. Associated with this first-order SDE is the Chapman–Kolmogorov (CK) equation governing the evolution in time of the non-stationary respon…
Stochastic ship roll motion via path integral method
2010
ABSTRACTThe response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple …