6533b830fe1ef96bd1297bac

RESEARCH PRODUCT

Stochastic ship roll motion via path integral method

M. Di PaolaRaouf A. IbrahimAntonina PirrottaRoberta SantoroGiulio Cottone

subject

Path integrallcsh:Ocean engineeringRandom impulsive ice loadingOcean EngineeringProbability density functionResponse amplitude operatorPoisson distributionShip roll Random impulsive ice loading Poisson distributionsymbols.namesakelcsh:VM1-989Control theorylcsh:TC1501-1800Parametric random excitationChapman-Kolmogorov equationMathematicsParametric statisticsOscillationMathematical analysisDynamics (mechanics)lcsh:Naval architecture. Shipbuilding. Marine engineeringControl and Systems EngineeringPath integral formulationPoisson distributionsymbolsShip rollSettore ICAR/08 - Scienza Delle CostruzioniChapman–Kolmogorov equation

description

ABSTRACTThe response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied for ship roll dynamics under random impulsive white noise excitation.

https://doi.org/10.2478/ijnaoe-2013-0027