Search results for "Pendulum"
showing 10 items of 25 documents
Experimental framework of traveling trolley with swinging load for hybrid motion control
2018
A novel experimental framework of the traveling trolley with swinging load is proposed. The system is designed as a controlled moving cart with pendulum for investigation of the hybrid motion control methods, involving the discrete sensors and impulsive event-based state observations and control actions. A mechatronic approach of principal system design, modeling, and identification are provided together with a motion control of the cart and simple event-based control of a-priori unknown final position. The coupled motion dynamics is analyzed and evaluated by using the discrete sensors, along with the control results.
Estimation of Sway-angle Based on Hybrid State Observer Using Continuous and Discrete Sensing
2019
A hybrid state observer design is presented herein to estimate sway-angle and angular velocity in trolley systems with pendulum. In general, anti-sway control for trolley systems with pendulum such as overhead cranes are designed based on sway-angle signals detected by angular sensors. Opposed to that, a state observer without those sensors is proposed to estimate the sway-angle of the pendulum. A standard linear continuous feedback observer causes estimation error owing to the system nonlinearity and modeling error. This paper proposes a hybrid state observer incorporating discrete sensor signals. In the hybrid state observer, the estimation performance is improved by correcting the state …
Strategies of Identification of a Base-Isolated Hospital Building by Coupled Quasi-Static and Snap-Back Tests
2020
In this paper, the description of a series of quasi-static pushing tests and dynamic snap-back tests is proposed, involving the base-isolated emergency building of the Palermo university hospital. The base isolation system is characterized by a set of double-curved friction pendulum isolators placed on the top of the columns of the underground level, characteristics that cannot be found in the experimental studies available in the literature. The aim of the work was to investigate the static and dynamic properties of the building in question and comparing the in-situ results with the characteristics assigned during the design process and to assess the level of agreement. Static lateral push…
Fuzzy modeling and control for a class of inverted pendulum system
2014
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/936868 Open Access Focusing on the issue of nonlinear stability control system about the single-stage inverted pendulum, the T-S fuzzy model is employed. Firstly, linear approximation method would be applied into fuzzy model for the single-stage inverted pendulum. At the same time, for some nonlinear terms which could not be dealt with via linear approximation method, this paper will adopt fan range method into fuzzy model. After the T-S fuzzy model, the PDC technology is utilized to design the fuzzy controller secondly. Numerical simulation res…
A new method to calculate external mechanical work using force-platform data in ecological situations in humans: Application to Parkinson's disease
2016
Abstract Background and aim To accurately quantify the cost of physical activity and to evaluate the different components of energy expenditure in humans, it is necessary to evaluate external mechanical work ( W EXT ). Large platform systems surpass other currently used techniques. Here, we describe a calculation method for force-platforms to calculate long-term W EXT . Methods Each force-platform (2.46 × 1.60 m and 3.80 × 2.48 m) rests on 4 piezoelectric sensors. During long periods of recording, a drift in the speed of displacement of the center of mass (necessary to calculate W EXT ) is generated. To suppress this drift, wavelet decomposition is used to low-pass filter the source signal.…
Modelling, Analysis, and Simulation of the Micro-Doppler Effect in Wideband Indoor Channels with Confirmation Through Pendulum Experiments
2020
This paper is about designing a 3D no n-stationary wideband indoor channel model for radio-frequency sensing. The proposed channel model allows for simulating the time-variant (TV) characteristics of the received signal of indoor channel in the presence of a moving object. The moving object is modelled by a point scatterer which travels along a trajectory. The trajectory is described by the object&rsquo
A Trajectory-Driven SIMO mm-Wave Channel Model for a Moving Point Scatterer
2021
In this paper, we propose a trajectory-based three-dimensional (3D) non-stationary channel model for a millimeter wave (mm-Wave) single-input multiple-output (SIMO) system. The proposed channel model is designed to capture the mobility of a moving point scatterer in an indoor environment. We derive the expression of the time-variant (TV) channel transfer function (CTF). We study the TV Doppler characteristics of the channel, such as the TV Doppler power spectrum and the TV mean Doppler shift. To validate the proposed channel model, we performed a measurement campaign in an indoor environment using a software defined radar operating at 24 GHz. As a moving object, we consider a single swingin…
Estimating Sway Angle of Pendulum System Using Hybrid State Observer Incorporating Continuous and Discrete Sensing Signals
2021
A Trajectory-Driven 3D Non-Stationary mm-Wave MIMO Channel Model for a Single Moving Point Scatterer
2021
This paper proposes a new non-stationary three-dimensional (3D) channel model for a physical millimeter wave (mm-Wave) multiple-input multiple-output (MIMO) channel. This MIMO channel model is driven by the trajectory of a moving point scatterer, which allows us to investigate the impact of a single moving point scatterer on the propagation characteristics in an indoor environment. Starting from the time-variant (TV) channel transfer function, the temporal behavior of the proposed non-stationary channel model has been analyzed by studying the TV micro-Doppler characteristics and the TV mean Doppler shift. The proposed channel model has been validated by measurements performed in an indoor e…
Numerical Approximation of Elliptic Variational Problems
2003
This chapter is dedicated to the study of Elliptic Variational Inequalities (EVI). Different forms of such an EVI are considered. The Ritz—Galerkin discretization method is introduced, and methods to approximate the solution of an EVI are presented. The finite dimensional subspaces are built by use of the Finite Element Method. The discretized problems are solved using variants of the Successive OverRelaxation (SOR) method. The algorithms are tested on a typical example. The way to develop computer programs is carefully analysed.