Search results for "Phene"

showing 10 items of 863 documents

Flat-band superconductivity in periodically strained graphene: mean-field and Berezinskii–Kosterlitz–Thouless transition

2019

In the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and $s$-wave superconducting state properties of periodically strained graphene, which exhibits approximate flat bands with a high density of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results by calculating the superfluid weight and the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature $T_\text{BKT}$ to determine the true transition point. By numerically solving the self-consistency …

Condensed Matter::Quantum GasesSuperconductivityPhysicsLocal density of statesCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciences02 engineering and technologyBCS theory021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSuperconductivity (cond-mat.supr-con)Kosterlitz–Thouless transitionStrain engineeringTransition pointCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesDensity of statesGeneral Materials Science010306 general physics0210 nano-technologyBilayer grapheneJournal of Physics: Condensed Matter
researchProduct

Flat-band superconductivity in periodically strained graphene : mean-field and Berezinskii–Kosterlitz–Thouless transition

2020

In the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and s-wave superconducting state properties of periodically strained graphene, which exhibits approximate flat bands with a high density of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results by calculating the superfluid weight and the Berezinskii–Kosterlitz–Thouless (BKT) transition temperature T BKT to determine the true transition point. By numerically solving the self-consistency equation, w…

Condensed Matter::Quantum Gasesflat bandssuprajohtavuusnanorakenteetBCS theoryCondensed Matter::Superconductivitysuperconductivitygraphenestrain engineeringgrafeeni
researchProduct

Current density maps, magnetizability, and nuclear magnetic shielding tensors of bis-heteropentalenes. III. Thieno-thiophene isomers

2005

Near Hartree–Fock values of the magnetic susceptibility and nuclear magnetic shielding of bis-heteropentalenes consisting of two thiophene units ([2,3-b], [3,2-b], [3,4-b], and [3,4-c] isomers) have been estimated via computational schemes relying on continuous transformation of the origin of the current density within the coupled Hartree–Fock approximation and extended gaugeless Gaussian basis sets. The results are compared with those obtained via London gauge-including orbitals. Maps of streamlines and the modulus of the ring current density induced by a magnetic field normal to the molecular plane are reported for the three isomers of higher symmetry, showing that the intense diamagnetic…

Condensed matter physicsChemistryBiophysicsElectronCondensed Matter PhysicsMolecular physicsMagnetic susceptibilityCurrent density maps; magnetizability; nuclear magnetic shielding tensors; thieno-thiophene isomersMagnetic fieldchemistry.chemical_compoundMagnetic anisotropyElectromagnetic shieldingThiopheneDiamagnetismTensorPhysical and Theoretical ChemistryMolecular Biology
researchProduct

Light induced electropolymerization of poly(3,4-ethylenedioxythiophene) on niobium oxide

2010

Abstract The photoelectrochemical polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, was successfully realized on anodic film grown to 50 V on magnetron sputtered niobium. Photocurrent Spectroscopy was employed to study the optical properties of Nb/Nb 2 O 5 /PEDOT/electrolyte interface in a large range of potential, and to get an estimate of the band gap and flat band potential of both the oxide and the polymer. Scanning Electron Microscopy was used to study the morphology of PEDOT. Both the optical and morphological features of the photoelectrochemically grown polymer were compared with those showed by PEDOT electropolymerized on gold conducting substrate.

Conductive polymerPhotocurrentMaterials scienceBand gapGeneral Chemical EngineeringPhotoelectrochemistryInorganic chemistryOxidephoto-electropolymerization poly(34-ethylenedioxythiophene) niobium oxidechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryPEDOT:PSSChemical engineeringBand gap Niobium oxide PEDOT PhotoelectrochemistryElectrochemistryNiobium oxidePoly(34-ethylenedioxythiophene)Electrochimica Acta
researchProduct

Ester-functionalized poly(3-alkylthiophene) copolymers : synthesis, physicochemical characterization and performance in bulk heterojunction organic s…

2013

Abstract The introduction of functional moieties in the donor polymer (side chains) offers a potential pathway toward selective modification of the nanomorphology of conjugated polymer:fullerene active layer blends applied in bulk heterojunction organic photovoltaics, pursuing morphology control and solar cell stability. For this purpose, two types of poly(3-alkylthiophene) random copolymers, incorporating different amounts (10/30/50%) of ester-functionalized side chains, were efficiently synthesized using the Rieke method. The solar cell performance of the functionalized copolymers was evaluated and compared to the pristine P3HT:PCBM system. It was observed that the physicochemical and opt…

Conductive polymerchemistry.chemical_classificationMaterials scienceOrganic solar cellfullerenesGeneral ChemistryPolymerCondensed Matter PhysicsPolymer solar cellbulk heterojunction solar cellsElectronic Optical and Magnetic Materialslaw.inventionBiomaterialschemistry.chemical_compoundchemistrylawSolar cellPolymer chemistryMaterials ChemistryCopolymerSide chainPolythiopheneorganic photovoltaicsElectrical and Electronic Engineeringconductive polymers
researchProduct

Polymer-based symmetric electrochromic devices

1999

Abstract The fact that conjugated polymers repeatedly undergo electrochemical doping/undoping processes, which are accompained by color changes, makes these materials very attractive, and much effort has been devoted to their use in advanced devices. There is renewed interest in electroactive polymers that reversibly undergo both p- and n-doping because of their potential application in symmetric electrochemical devices. We employed fused molecules, dithienothiophenes, as monomers to obtain polymers with a narrow band gap suitable for n- and p-doping. The performance results of two symmetric electrochromic devices having as electrodes both poly(dithieno[3,4-b:3',4'-d]thiophene) (pDTT1) and …

Conductive polymerchemistry.chemical_classificationMaterials scienceRenewable Energy Sustainability and the EnvironmentDopingNanotechnologyPolymerConjugated systemElectrochromic devicesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundMonomerchemistryThiopheneElectroactive polymersOrganic chemistrySolar Energy Materials and Solar Cells
researchProduct

Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

2005

The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction …

Conservation of Natural ResourcesOctoxynolSoil textureEnvironmental remediationHealth Toxicology and MutagenesisSettore AGR/13 - Chimica AgrariaThiophenesToxicologyHydrocarbons Aromaticcomplex mixturesSoilSonicationSurface-Active AgentsSoil PollutantsHumic acidHumic Substanceschemistry.chemical_classificationSoil-remediation Soil-washing Soxhlet Sonication Contaminated soilsExtraction (chemistry)Sodium Dodecyl SulfateWaterGeneral MedicineContaminationPollutionSoil contaminationItalychemistryChemical IndustryCritical micelle concentrationEnvironmental chemistrySoil waterEnvironmental Pollution
researchProduct

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O-2-controlled atmosphere

2017

The effects of temperature and atmosphere (air and O2) on the doping of monolayers of graphene (Gr) on SiO2 and Si substrates, and on the doping of MoS2 multilayer flakes transferred on the same substrates have been investigated. The investigations were carried out by in situ micro-Raman spectroscopy during thermal treatments up to 430 °C, and by atomic force microscopy (AFM). The spectral positions of the G and 2D Raman bands of Gr undergo only minor changes during treatment, while their amplitude and full width at half maximum (FWHM) vary as a function of the temperature and the used atmosphere. The thermal treatments in oxygen atmosphere show, in addition to a thermal effect, an effect a…

Controlled atmosphereMaterials science2Analytical chemistrythermal dopingGeneral Physics and Astronomychemistry.chemical_elementtwo-dimensional (2D) materials02 engineering and technologyMoSlcsh:Chemical technology010402 general chemistrylcsh:Technology01 natural sciencesOxygenFull Research Paperlaw.inventionPhysics and Astronomy (all)symbols.namesakelawMonolayerNanotechnologylcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:ScienceSpectroscopylcsh:TGrapheneSettore FIS/01 - Fisica SperimentaleDopinggraphenetechnology industry and agriculture021001 nanoscience & nanotechnologylcsh:QC1-9990104 chemical sciencesNanoscienceFull width at half maximumTwo-dimensional (2D) materialchemistryRaman spectroscopysymbolslcsh:QMaterials Science (all)0210 nano-technologyRaman spectroscopyMoS2lcsh:Physics
researchProduct

Graphene p-Type Doping and Stability by Thermal Treatments in Molecular Oxygen Controlled Atmosphere

2015

Doping and stability of monolayer low defect content graphene transferred on a silicon dioxide substrate on silicon are investigated by micro-Raman spectroscopy and atomic force microscopy (AFM) during thermal treatments in oxygen and vacuum controlled atmosphere. The exposure to molecular oxygen induces graphene changes as evidenced by a blue-shift of the G and 2D Raman bands, together with the decrease of I2D/IG intensity ratio, which are consistent with a high p-type doping (∼1013 cm-2) of graphene. The successive thermal treatment in vacuum does not affect the induced doping showing this latter stability. By investigating the temperature range 140-350 °C and the process time evolution, …

Controlled atmosphereMaterials scienceSiliconGrapheneElectronic Optical and Magnetic MaterialDopinggrapheneSettore FIS/01 - Fisica SperimentaleAnalytical chemistrychemistry.chemical_elementSurfaces Coatings and FilmSubstrate (electronics)Thermal treatmentOxygenSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionGeneral EnergyEnergy (all)chemistrylawMonolayeroxygen annealingp-type dopingPhysical and Theoretical Chemistry
researchProduct

Segregation of copper oxide on calcium copper titanate surface induced by Graphene Oxide for Water splitting applications

2020

Abstract Photoelectrochemical cells (PEC) are promising devices for hydrogen production via sunlight energy. One of the important challenges in this area is to design photoactive electrodes able to absorb visible light. A good photoelectrochemical behavior depends on the presence of surface active sites to photogenerate current at the lower possible potential for water splitting. Recent investigations in this field are focusing on perovskite materials such as CaCu3Ti4O12 (CCTO) as visible light active electrode due its outstanding structure in which CCTO encloses in its structure a visible light absorbance component (CuO). The presence CuO on the material surface is mainly responsible for t…

Copper oxideMaterials scienceOxideGeneral Physics and Astronomy02 engineering and technology010402 general chemistry7. Clean energy01 natural scienceslaw.inventionchemistry.chemical_compoundlawCalcium copper titanate[CHIM]Chemical SciencesComputingMilieux_MISCELLANEOUSPerovskite (structure)GrapheneSurfaces and InterfacesGeneral ChemistryPhotoelectrochemical cell021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmschemistryChemical engineeringWater splitting0210 nano-technologyVisible spectrum
researchProduct