Search results for "Phosphole"
showing 10 items of 23 documents
CCDC 804806: Experimental Crystal Structure Determination
2013
Related Article: D.H.Nguyen, J.Bayardon, C.Salomon-Bertrand, S.Juge, P.Kalck, J.-C.Daran, M.Urrutigoity, M.Gouygou|2012|Organometallics|31|857|doi:10.1021/om2008265
CCDC 734965: Experimental Crystal Structure Determination
2010
Related Article: B.R.Aluri, S.Burck, D.Gudat, M.Niemeyer, O.Holloczki, L.Nyulaszi, P.G.Jones, J.Heinicke|2009|Chem.-Eur.J.|15|12263|doi:10.1002/chem.200901753
Structure, magnetizability, and nuclear magnetic shielding tensors of bis-heteropentalenes. IV. Dihydrophospholophosphole isomers
2005
The geometry of the heteropentalenes formed by two phosphole units has been determined at the DFT level. The magnetic susceptibility and the nuclear magnetic shielding at the nuclei of these systems have also been calculated using gauge-including atomic orbitals and a large Gaussian basis set to achieve near Hartree-Fock estimates. A comparative study of the various isomers, of their flattened analogs, and of the parent phosphole molecule, shows that the [3,4-c] isomer is the most aromatic system in the set considered, assuming diatropicity and degree of planarity as indicators, even if it is the less stable in terms of total molecular energy. Plots of magnetic field-induced current densiti…
Modular Phosphole-Methano-Bridged-Phosphine(Borane) Ligands. Application to Rhodium-Catalyzed Reactions
2012
The synthesis of the phospholyl(phosphinoborane)methane air- and moisture-stable hybrid ligands 4a–f, starting from 1-phenylphospholes 1a–d, was performed via P–C bond coupling on the methano bridge. Two strategies were investigated, according to the phospholyl moiety used as a nucleophilic or an electrophilic reagent. In the first pathway, the phospholyl anions react with the easily available (chloromethyl)diphenylphosphine–borane 3 to afford ligands 4a–d in 29–67% isolated yields. In the second pathway, the phospholyl(dicyclohexylphosphinoborane)methane ligands 4e,f were synthesized in 18–23% yields, through a nucleophilic substitution on the cyanophosphole. Removal of the BH3 moiety on 4…
CCDC 747830: Experimental Crystal Structure Determination
2009
Related Article: S.D.Robertson, T.Chivers, H.M.Tuononen|2009|Inorg.Chem.|48|6755|doi:10.1021/ic900703e
CCDC 631690: Experimental Crystal Structure Determination
2007
Related Article: J.S.Ritch, T.Chivers, D.J.Eisler, H.M.Tuononen|2007|Chem.-Eur.J.|13|4643|doi:10.1002/chem.200700001
CCDC 2034046: Experimental Crystal Structure Determination
2021
Related Article: Christine Salomon-Bertrand, J��r��me Bayardon, Hugo Laur��ano, Sylvain Jug��, Jean-Claude Daran, Maryse Gouygou|2021|J.Organomet.Chem.|938|121753|doi:10.1016/j.jorganchem.2021.121753
CCDC 712998: Experimental Crystal Structure Determination
2009
Related Article: S.D.Robertson, T.Chivers, H.M.Tuononen|2008|Inorg.Chem.|47|10634|doi:10.1021/ic801384c
CCDC 258388: Experimental Crystal Structure Determination
2005
Related Article: S.Burck, J.Daniels, T.Gans-Eichler, D.Gudat, K.Nattinen, M.Nieger|2005|Z.Anorg.Allg.Chem.|631|1403|doi:10.1002/zaac.200400538
CCDC 631687: Experimental Crystal Structure Determination
2007
Related Article: J.S.Ritch, T.Chivers, D.J.Eisler, H.M.Tuononen|2007|Chem.-Eur.J.|13|4643|doi:10.1002/chem.200700001