Search results for "Photocatalyst"

showing 10 items of 45 documents

Brookite, the Least Known TiO2 Photocatalyst

2013

Brookite is the least studied TiO2 photocatalyst due to the difficulties usually encountered in order to obtain it as a pure phase. In this review, a comprehensive survey of the different methods available for preparing brookite powders and films is reported. Attention has been paid both to the most traditional methods, such as hydrothermal processes at high temperatures and pressures, and to environmentally benign syntheses using water soluble compounds and water as the solvent. Papers reporting the photocatalytic activity of pure and brookite-based samples have been reviewed.

Materials scienceBrookiteInorganic chemistrybrookite nanostructuresTio2 photocatalystbrookitelcsh:Chemical technologyCatalysisHydrothermal circulationbrookite-based photocatalystslcsh:ChemistrySolventWater solublelcsh:QD1-999visual_artvisual_art.visual_art_mediumPhotocatalysisTiO2lcsh:TP1-1185brookite filmsPhysical and Theoretical Chemistrymixtures of TiO2 phasesCatalysts
researchProduct

Iron oxide-based magnetic photocatalysts: Recent developments, challenges, and environmental applications

2021

Abstract Magnetic separation of the solid photocatalyst from the reacting suspension has received great interest in recent research because it offers a suitable way for removing and recycling the heterogeneous photocatalytic material particles preventing the agglomeration and sedimentation during and after their use. The use of iron oxides such as heterogeneous photocatalysts is an appropriate choice to obtain a suitable photocatalyst easily separable from the fluid. This chapter presents a detailed investigation of iron oxide-based magnetic photocatalysts (IOMPs). We will discuss the required conditions for the synthesis of these photocatalysts, followed by their applications for the remov…

chemistry.chemical_classificationMaterials scienceEconomies of agglomerationMagnetic separationIron oxideFe3O4PolymerSedimentationIron oxide-based photocatalystsMagnetic photocatalystsSuspension (chemistry)MetalMagnetitechemistry.chemical_compoundChemical engineeringchemistryvisual_artPhotocatalysisvisual_art.visual_art_medium
researchProduct

Comparison between catalytic and photocatalytic activity in gas-solid regime of semiconductor oxides and carbon nanotubes supported Keggin heteropoly…

2015

Catalytic and photocatalytic 2-propanol dehydration was carried out by using a supported Keggin heteropolyacid H3PW12O40 (PW12). Binary materials were prepared by impregnation and/or solvothermal treatment by using commercial supports: SiO2 (Mallinckrodt), TiO2 (Evonik P25) and multiwall carbon nanotubes (Sunnano) or home solvothermically prepared SiO2 and TiO2. All the materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy observations (SEM) coupled with EDX microanalysis, specific surface area measurements, diffuse reflectance spectroscopy (DRS), FTIR and Raman spectroscopy. (Photo)catalytic 2-propanol dehydration was studied in gas-solid regime by usin…

Settore CHIM/07 - Fondamenti Chimici Delle TecnologieKeggin heteropolyacid photocatalyst semiconductor oxides
researchProduct

Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects

2018

This review deals with the parameters that influence heterogeneous photocatalysis (PC) for selective synthesis of high-value chemicals by itself or in combination with other technologies. In particular, the parameters related to the photocatalysts, such as crystallinity degree, type of polymorph, surface acid-base properties, exposure of particular crystalline facets, coupling of different semiconductors, position of the valence and conduction band edge, addition of doping agents, and those related to the reaction system, such as setup configuration and reactor geometry, type of solvent, type and amount of photocatalyst, affecting the selectivity toward specific products are described and d…

high value-added chemicals; photocatalyst features; reactor configuration optimization; selective photocatalysis; selectivity enhancement; Catalysis; Chemistry (all)selectivity enhancement02 engineering and technology010402 general chemistry01 natural sciencesCatalysisCatalysisCatalysiMoleculeselective photocatalysihigh value-added chemicalsphotocatalyst featuresSettore ING-IND/24 - Principi Di Ingegneria Chimicareactor configuration optimizationselective photocatalysisChemistryChemistry (all)General Chemistry021001 nanoscience & nanotechnologyphotocatalyst feature0104 chemical sciencesChemical engineeringPhotocatalysisSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyhigh value-added chemical
researchProduct

Synthesis of ZnO–Ag2CO3–Fe3O4@rGO core–shell structure: magnetically separable photocatalyst for degradation of MB using the Box–Behnken design

2020

In this work, a simple microwave method was utilized to prepare ZnO sheet linked with Fe3O4@rGO core–shell and of Ag2CO3 through formation of the quadri-photocatalytic with high activity. The microstructure, morphology, spectroscopic, and magnetic characteristics of the prepared samples were assessed using XRD, SEM, PL, TEM, FT-IR, DLS, and VSM analysis. The photocatalytic activity of the material was evaluated for photodegradation of methylene blue dye under the UV and visible light with home-made photoreactor. The response surface method in a Box–Behnken design was utilized to design the experiments. The parameters affecting the efficiency of the degradation including, pH (5–9), photocata…

010302 applied physicsMaterials scienceCondensed Matter PhysicsMicrostructure01 natural sciencesBox–Behnken designAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCatalysischemistry.chemical_compoundchemistryChemical engineering0103 physical sciencesPhotocatalysisDegradation (geology)Fe3O4 magnetically separable photocatalyst photocatalysis photodegradationElectrical and Electronic EngineeringPhotodegradationMethylene blueVisible spectrumJournal of Materials Science: Materials in Electronics
researchProduct

Heterogeneous photocatalysis for selective partial oxidation reactions in aqueous suspension

2018

Heterogeneous photocatalysis for selective partial oxidation reactions in aqueous suspension

Heterogeneous photocatalysis selective partial oxidation carbon nitride photocatalystSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Synthesis and Characterization of TiO2 Based Inorganic-Organic Hybrid Photocatalysts for Enhancing the Selective Formation of 4-Methoxy-benzaldehyde …

2015

The oxidation of alcohols to carbonyl compounds in a clean fashion (i.e., with water as a solvent or under solvent-free conditions, and using O2 or H2O2 as the primary oxidant) is the subject of considerable research efforts. A new approach for the selective oxidation of soluble aromatic alcohols in water under mild conditions via a novel composite photocatalyst has been developed. The catalyst is synthesized by grafting 4-(4-(4- hydroxyphenylimino)cyclohexa-2,5dienylideneamino)phenol and silver nanoparticles onto the surface of moderately crystalline titanium dioxide. The titanium dioxide-based composite was first extensively characterized and then employed in the catalytic oxidation of 4-…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore AGR/13 - Chimica AgrariaPartial oxydation inorganic-organic Hybrid photocatalystSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Cathodoluminescence characterization of ZnO/ZnS nanostructures anodized under hydrodynamic conditions

2018

[EN] ZnO/ZnS nanostructures were successfully synthesized by a simple electrochemical anodization of zinc in a glycerol based electrolyte containing sulfide-ammonium fluoride. The influence of different hydrodynamic conditions and anodization potentials during anodization on the morphological and electronic properties of the obtained ZnO/ZnS nanostructures was studied. The anodized samples were characterized using confocal Raman microscopy, X-Ray Diffraction (XRD), Field Emission Scanning Electronic Microscopy (FE-SEM), cathodoluminescence (CL), and photoelectrochemical water splitting tests under standard AM 1.5 conditions. The results showed that hydrodynamic conditions and higher potenti…

Materials scienceCathodoluminescenceGeneral Chemical EngineeringCathodoluminescenceZnO/ZnS nanostructure02 engineering and technology010402 general chemistry01 natural sciencesINGENIERIA QUIMICAsymbols.namesakeMicroscopyElectrochemistryWater splittingPhotocurrentNanoestructuresAnodizingPhotocatalyst021001 nanoscience & nanotechnology0104 chemical sciencesElectroquímicaField electron emissionChemical engineeringsymbolsPhotocatalysisWater splittingAnodization0210 nano-technologyRaman spectroscopy
researchProduct

Time-Dependent Density Functional Theory Calculations of N- and S-Doped TiO2 Nanotube for Water-Splitting Applications

2021

This research was funded by the Latvian Council of Science grant LZP-2018/2-0083. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union?s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2.

NanotubeAnataseMaterials scienceAbsorption spectroscopyabsorption spectraGeneral Chemical Engineering02 engineering and technology7. Clean energy01 natural sciencesTiO2 nanotubeCondensed Matter::Materials Science0103 physical sciencesTime-dependent density functional theoryPhysics::Atomic and Molecular Clusterstransition contribution mapsGeneral Materials ScienceTransition contribution maps010306 general physicsQD1-999TiO<sub>2</sub> nanotubeDopantphotocatalystDopingAbsorption spectraPhotocatalystTime-dependent density functional theory021001 nanoscience & nanotechnologyChemistrytime-dependent density functional theoryChemical physics:NATURAL SCIENCES [Research Subject Categories]Water splittingDensity functional theory0210 nano-technologyNanomaterials
researchProduct

Highly robust and selective system for water pollutants removal: How to transform a traditional photocatalyst into a highly robust and selective syst…

2019

Highly porous monolithic aerogels based on ZnO photocatalyst and syndiotactic polystyrene (s-PS) were obtained by supercritical CO2 treatment of ZnO/s-PS gels. The prepared aerogels were characterized and their photocatalytic activity was evaluated using phenol and toluene as water pollutant models. The s-PS nanoporous crystalline phase, able to absorb pollutant molecules, was proven to be necessary to ensure high photocatalytic efficiency as the aerogel acts not only as a support, but also as pollutant pre-concentrator. The reusability of ZnO/s-PS aerogels is also strong showing no decrease in photocatalytic activity after six consecutive degradation trials. Finally, the aerogel matrix pre…

PollutantNanoporous crystalline phasesMaterials scienceWater pollutants photodegradationNanoporousGeneral Chemical EngineeringAerogelsAerogelArticleSupercritical fluidlcsh:Chemistrychemistry.chemical_compoundlcsh:QD1-999chemistryChemical engineeringPhotocatalyst supportPhotocatalysisZnODegradation (geology)General Materials SciencePolystyreneDissolutionAerogels; Nanoporous crystalline phases; Photocatalyst support; Water pollutants photodegradation; ZnO
researchProduct