Search results for "Photonic crystals"
showing 10 items of 26 documents
Extraordinary tuning of a nanocavity by a near-field probe
2011
Abstract We report here an experimental observation of an extraordinary near-field interaction between a local probe and a small-volume solid-state nanocavity. We directly compare the normally observed near-field interaction regime driven by the perturbation theory and then report the extraordinary interaction regime. Subsequently, we show that the cavity can take up to 2 min to recover from this interaction after removing the probe and that leads to an extraordinary blue-shift of the cavity resonance wavelength (∼15 nm) which depends on the probe motion above the cavity and not the position. The reasons for this effect are not fully understood yet but we try to give some explanations.
Redox-Tunable Defects in Colloidal Photonic Crystals
2005
Coherent Control of Stimulated Emission inside one dimensional Photonic Crystals:Strong Coupling regime
2006
The present paper discusses the stimulated emission, in strong coupling regime, of an atom embedded inside a one dimensional (1D) Photonic Band Gap (PBG) cavity which is pumped by two counter-propagating laser beams. Quantum electrodynamics is applied to model the atom-field interaction, by considering the atom as a two level system, the e.m. field as a superposition of normal modes, the coupling in dipole approximation, and the equations of motion in Wigner-Weisskopf and rotating wave approximations. In addition, the Quasi Normal Mode (QNM) approach for an open cavity is adopted, interpreting the local density of states (LDOS) as the local density of probability to excite one QNM of the ca…
Micromoulding of three-dimensional photonic crystals on silicon substrates
2003
International audience; The growth of three-dimensional photonic crystals (PhCs) on patterned silicon substrates is reported. It is shown that deep trenches can be uniformly filled by a self-assembly of polymer microspheres, in a close-packed face-centred cubic lattice. The crystalline quality is compared for different channel widths. These observations are confirmed by optical reflectance measurements in the visible range, showing a bandwidth of enhanced reflection. The possibility to detach the PhC, i.e. to use the substrate as a mould, is also demonstrated. The potential of this approach for building PhC-based complex architectures is discussed.
2D photonic defect layers in 3D inverted opals on Si platforms
2006
Dielectric spheres synthesised for the fabrication of self-organized photonic crystals such as opals offer large opportunities for the design of novel nanophotonic devices. In this paper, we show a hexagonal superlattice monolayer of dielectric spheres inscribed on a 3D colloidal photonic crystal by e-beam lithography. The crystal is produced by a variation of the vertical drawing deposition method assisted by an acoustic field. The structures were chosen after simulations showed that a hexagonal super-lattice monolayer in air exhibits an even photonic band gap below the light cone if the refractive index of the spheres is higher than 1.93.
Ethanol vapor optical sensors based on polystyrene opals infiltrated with hydrogel
2013
Fine tuning of a photonic band-gap with picosecond laser pulses
2008
We report on light-driven tuning of the optical properties of colloidal photonic crystals (polystyrene opals) doped with gold nanoparticles (Au-np). Using picosecond pulses at 532 nm we obtained permanent changes in the stop band around 1700 nm, with resonance blue shifts as large as 30 nm.
Parametric Solitons in Two-Dimensional Lattices of Purely Nonlinear Origin
2008
We demonstrate spatial solitons via twin-beam second-harmonic generation in hexagonal lattices realized by poling lithium niobate planar waveguides. These simultons can be steered by acting on power, direction, and wavelength of the fundamental frequency input.
Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals
2007
We consider layered heterostructures combining ordinary positive index materials and dispersive metamaterials. We show that these structures can exhibit a new type of photonic gap around frequencies where either the magnetic permeability \mu or the electric permittivity \epsilon of the metamaterial is zero. Although the interface of a semi-infinite medium with zero refractive index (a condition attained either when \mu= 0 or when \epsilon= 0) is known to give full reflectivity for all incident polarizations, here we show that a gap corresponding to \mu = 0 occurs only for TE polarized waves, whereas a gap corresponding to \epsilon = 0 occurs only for TM polarized waves. These band gaps are …
Nanoparticle One-Dimensional Photonic-Crystal Dye Laser
2009
The stimulated emission from an organic dye adsorbed within the void network of a NP 1D (photonic crystals) PC, was studied. The nanoparticle one-dimensional photonic crystals (NP 1DPCs) were assembled by polyelectrolyte-assisted layer-by-layer deposition with subsequent calcination of the films to remove the polymer components. Each layer was prepared by spin-coating a block-copolymer-templated titania- or silica-based sol solution followed by a calcination step. To maximize the photonic-crystal effect, PCs consisting of eleven bilayers, compared to the four-bilayer NP 1D PCs, were fabricated with good structural and optical quality over 2 cm ×2 cm areas. The effective refractive index of …