Search results for "Photoreceptor Cells"
showing 10 items of 99 documents
Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors.
2014
Outer segments (OS) of rod photoreceptors are cellular compartments specialized in the conversion of light into electrical signals. This process relies on the light-triggered change in the intracellular levels of cyclic guanosine monophosphate (cGMP), which in turn controls the activity of cyclic nucleotide-gated (CNG) channels in the rod OS plasma membrane. The rod CNG channel is a macromolecular complex that in its core harbors the ion-conducting CNGA1 and CNGB1a subunits. To identify additional proteins of the complex that interact with the CNGB1a core subunit we applied affinity purification of mouse retinal proteins followed by mass spectrometry. In combination with in vitro and in viv…
Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.
2005
Contains fulltext : 48386.pdf (Publisher’s version ) (Closed access) Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. USH is clinically and genetically heterogeneous with at least 11 chromosomal loci assigned to the three USH types (USH1A-G, USH2A-C, USH3A). Although the different USH types exhibit almost the same phenotype in human, the identified USH genes encode for proteins which belong to very different protein classes and families. We and others recently reported that the scaffold protein harmonin (USH1C-gene product) integrates all identified USH1 molecules in a USH1-protein network. Here, we investigated the relationship between the USH2 molecules a…
A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells.
2008
Contains fulltext : 69178.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic anal…
Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.
2014
Item does not contain fulltext The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed tha…
Evidence for synergistic and complementary roles of Bassoon and darkness in organizing the ribbon synapse
2012
Abstract Ribbon synapses are tonically active high-throughput synapses. The performance of the ribbon synapse is accomplished by a specialization of the cytomatrix at the active zone (CAZ) referred to as the synaptic ribbon (SR). Progress in our understanding of the structure–function relationship at the ribbon synapse has come from observations that, in photoreceptors lacking a full-size scaffolding protein Bassoon ( Bsn Δ Ex 4 / 5 ), dissociation of SRs coincides with perturbed signal transfer. The aim of the present study has been to elaborate the role of Bassoon as a structural organizer of the ribbon synapse and to differentiate it with regard to the ambient lighting conditions. The ul…
Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina
2011
Contains fulltext : 96822.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeat…
Nxnl2 splicing results in dual functions in neuronal cell survival and maintenance of cell integrity
2012
International audience; The rod-derived cone viability factors, RdCVF and RdCVF2, have potential therapeutical interests for the treatment of inherited photoreceptor degenerations. In the mouse lacking Nxnl2, the gene encoding RdCVF2, the progressive decline of the visual performance of the cones in parallel with their degeneration, arises due to the loss of trophic support from RdCVF2. In contrary, the progressive loss of rod visual function of the Nxnl2-/- mouse results from a decrease in outer segment length, mediated by a cell autonomous mechanism involving the putative thioredoxin protein RdCVF2L, the second spliced product of the Nxnl2 gene. This novel signaling mechanism extends to o…
ERG signal analysis using wavelet transform
2009
The wavelet analysis is a powerful tool for analyzing and detecting features of signals characterized by time-dependent statistical properties, as biomedical signals. The identification and the analysis of the components of these signals in the time-frequency domain, give meaningful information about the physiological mechanisms that govern them. This article presents the results of the wavelet analysis applied to the a-wave component of the human electroretinogram. In order to deepen and improve our knowledge about the behavior of the early photoreceptoral response, including the possible activation of interactions and correlations among the photoreceptors, we have detected and identified …
Molecular mechanisms in developmental biology.
1996
Some general molecular mechanisms underlying development are described. Namely: those involved in the differentiation of the R7 receptor in Drosophila embryonic retina; those involved in the determination of embryonic axes and in polar cell differentiation, in Drosophila; those involved in the determination of the AB and P cell lineage and in vulva differentiation in Caenorhabditis embryos.
The binding of G-protein to rod outer segment phospholipids at the nitrogen–water interface
1989
In the visual process, one photoexcited rhodopsin (R*) catalyzes the activation of hundreds of G-proteins. It remains to be determined whether G-protein and R* find one another by membrane surface diffusion of these components (diffusion model) or by diffusion of G-protein through the aqueous phase (hopping model). A monolayer of each main rod outer segment (ROS) phospholipid interacting with a subphase containing G-protein, has been used to simulate the interaction of G-protein with the cytoplasmic surface of discal membranes. The possible diffusion of G-protein through the aqueous phase was then measured by observing its adsorption–desorption in the monolayer of each main ROS phospholipi…