Search results for "Photoreceptor Cells"

showing 10 items of 99 documents

Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors.

2014

Outer segments (OS) of rod photoreceptors are cellular compartments specialized in the conversion of light into electrical signals. This process relies on the light-triggered change in the intracellular levels of cyclic guanosine monophosphate (cGMP), which in turn controls the activity of cyclic nucleotide-gated (CNG) channels in the rod OS plasma membrane. The rod CNG channel is a macromolecular complex that in its core harbors the ion-conducting CNGA1 and CNGB1a subunits. To identify additional proteins of the complex that interact with the CNGB1a core subunit we applied affinity purification of mouse retinal proteins followed by mass spectrometry. In combination with in vitro and in viv…

Rhodopsingenetic structuresImmunoelectron microscopyProtein subunitPeripherinsCyclic Nucleotide-Gated Cation ChannelsNerve Tissue ProteinsBiologyRetinaCell membraneMiceRetinal Rod Photoreceptor CellsRetinitis pigmentosaGeneticsmedicineAnimalsHumansPeripherin 2Molecular BiologyGenetics (clinical)General MedicineAnatomyRetinal Photoreceptor Cell Outer Segmentmedicine.diseaseProtein Structure TertiaryTransmembrane domainmedicine.anatomical_structureFörster resonance energy transferRhodopsinbiology.proteinBiophysicssense organsRetinitis PigmentosaProtein Binding
researchProduct

Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.

2005

Contains fulltext : 48386.pdf (Publisher’s version ) (Closed access) Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. USH is clinically and genetically heterogeneous with at least 11 chromosomal loci assigned to the three USH types (USH1A-G, USH2A-C, USH3A). Although the different USH types exhibit almost the same phenotype in human, the identified USH genes encode for proteins which belong to very different protein classes and families. We and others recently reported that the scaffold protein harmonin (USH1C-gene product) integrates all identified USH1 molecules in a USH1-protein network. Here, we investigated the relationship between the USH2 molecules a…

Scaffold proteinGenetics and epigenetic pathways of disease [NCMLS 6]Usher syndromeStereocilia (inner ear)Cell Cycle ProteinsBiologyInteractomeReceptors G-Protein-CoupledMiceotorhinolaryngologic diseasesGeneticsmedicineAnimalsNeurosensory disorders [UMCN 3.3]Photoreceptor CellsRats WistarMolecular BiologyGeneGenetics (clinical)Renal disorder [IGMD 9]GeneticsExtracellular Matrix ProteinsStereociliumBinding SitesHair Cells Auditory InnerSodium-Bicarbonate SymportersUsher Syndrome Type 1General Medicinemedicine.diseasePhenotypeRatsMice Inbred C57BLCytoskeletal ProteinsCarrier ProteinsUsher Syndromes
researchProduct

A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells.

2008

Contains fulltext : 69178.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic anal…

Scaffold proteinGenetics and epigenetic pathways of disease [NCMLS 6]XenopusCell Cycle ProteinsNerve Tissue ProteinsBiologyIn Vitro TechniquesNeuroinformatics [DCN 3]TransfectionModels BiologicalReceptors G-Protein-CoupledMiceChlorocebus aethiopsProtein Interaction MappingGeneticsPerception and Action [DCN 1]otorhinolaryngologic diseasesAnimalsHumansNeurosensory disorders [UMCN 3.3]Cell Cycle ProteinMicroscopy ImmunoelectronMolecular BiologyIntegral membrane proteinGenetics (clinical)Adaptor Proteins Signal TransducingRenal disorder [IGMD 9]GeneticsMice KnockoutExtracellular Matrix ProteinsCiliumSignal transducing adaptor proteinMembrane ProteinsGeneral MedicineTransmembrane proteinCell biologyMice Inbred C57BLCytoskeletal ProteinsEctodomainGenetic defects of metabolism [UMCN 5.1]COS CellsNIH 3T3 CellsCervical collarUsher SyndromesFunctional Neurogenomics [DCN 2]Photoreceptor Cells VertebrateSubcellular FractionsImmunity infection and tissue repair [NCMLS 1]
researchProduct

Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

2014

Item does not contain fulltext The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed tha…

Scaffold proteinGuanylate kinaseMolecular Sequence DataPrimary Cell CultureNerve Tissue ProteinsBiologyEndocytosisPhotoreceptor cellExocytosisMiceCiliogenesisGeneticsmedicineAnimalsHumansProtein Interaction Domains and MotifsAmino Acid SequencePhosphorylationRNA Small InterferingSensory disorders Radboud Institute for Molecular Life Sciences [Radboudumc 12]Molecular BiologyGenetics (clinical)Adaptor Proteins Signal TransducingBinding SitesGeneral MedicineClathrinEndocytosisCell biologyMice Inbred C57BLRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]medicine.anatomical_structureHEK293 CellsGene Expression RegulationCiliary pocketCarrier ProteinsSterile alpha motifGuanylate KinasesSequence AlignmentUsher SyndromesPhotoreceptor Cells VertebrateProtein BindingSignal TransductionHuman molecular genetics
researchProduct

Evidence for synergistic and complementary roles of Bassoon and darkness in organizing the ribbon synapse

2012

Abstract Ribbon synapses are tonically active high-throughput synapses. The performance of the ribbon synapse is accomplished by a specialization of the cytomatrix at the active zone (CAZ) referred to as the synaptic ribbon (SR). Progress in our understanding of the structure–function relationship at the ribbon synapse has come from observations that, in photoreceptors lacking a full-size scaffolding protein Bassoon ( Bsn Δ Ex 4 / 5 ), dissociation of SRs coincides with perturbed signal transfer. The aim of the present study has been to elaborate the role of Bassoon as a structural organizer of the ribbon synapse and to differentiate it with regard to the ambient lighting conditions. The ul…

Scaffold proteinSynaptic ribbonRetinaGeneral NeuroscienceNerve Tissue ProteinsNanotechnologyDarknessRibbon synapseBiologyMice Mutant StrainsMice Inbred C57BLMicemedicine.anatomical_structureMicroscopy Electron TransmissionArciform densitySynapsesDarknessRibbonmedicineBiophysicsAnimalssense organsActive zonePhotoreceptor Cells VertebrateNeuroscience
researchProduct

Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina

2011

Contains fulltext : 96822.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeat…

Scaffold proteinUsher syndromePhosphodiesterase 4D interacting protein (PDE4DIP)Muscle ProteinsPlasma protein bindingMice0302 clinical medicineYeastsChlorocebus aethiopsNuclear proteinCells CulturedGenetics0303 health scienceseducation.field_of_studyNuclear ProteinsCell biologyCOS CellssymbolsPhotoreceptor Cells VertebrateProtein BindingMicrotubule based transportNerve Tissue ProteinsBiologyModels BiologicalRetina03 medical and health sciencessymbols.namesakemedicineAnimalsHumanseducationMolecular BiologyAdaptor Proteins Signal Transducing030304 developmental biologyCell BiologyGlycostation disorders [IGMD 4]Golgi apparatusmedicine.diseaseMacaca mulattaMice Inbred C57BLCytoskeletal ProteinsPhotoreceptor cell functionMyomegalinGenetics and epigenetic pathways of disease Functional Neurogenomics [NCMLS 6]CattleAnkyrin repeatCiliary baseIntracellular transport030217 neurology & neurosurgerySensorineuronal degeneration
researchProduct

Nxnl2 splicing results in dual functions in neuronal cell survival and maintenance of cell integrity

2012

International audience; The rod-derived cone viability factors, RdCVF and RdCVF2, have potential therapeutical interests for the treatment of inherited photoreceptor degenerations. In the mouse lacking Nxnl2, the gene encoding RdCVF2, the progressive decline of the visual performance of the cones in parallel with their degeneration, arises due to the loss of trophic support from RdCVF2. In contrary, the progressive loss of rod visual function of the Nxnl2-/- mouse results from a decrease in outer segment length, mediated by a cell autonomous mechanism involving the putative thioredoxin protein RdCVF2L, the second spliced product of the Nxnl2 gene. This novel signaling mechanism extends to o…

Sensory Receptor Cellsgenetic structuresCell SurvivalRNA SplicingSensory system[SDV.GEN] Life Sciences [q-bio]/GeneticsOlfactionBiologyArticleMice03 medical and health sciencesThioredoxins0302 clinical medicineRetinal Rod Photoreceptor CellsGeneticsAnimalsEye ProteinsMolecular BiologyGeneCells CulturedGenetics (clinical)030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/Genetics0303 health sciencesGeneral MedicineAnatomySensory Receptor CellsCell biologyRNA splicingThioredoxinRetinal Rod Photoreceptor Cells030217 neurology & neurosurgeryFunction (biology)Human Molecular Genetics
researchProduct

ERG signal analysis using wavelet transform

2009

The wavelet analysis is a powerful tool for analyzing and detecting features of signals characterized by time-dependent statistical properties, as biomedical signals. The identification and the analysis of the components of these signals in the time-frequency domain, give meaningful information about the physiological mechanisms that govern them. This article presents the results of the wavelet analysis applied to the a-wave component of the human electroretinogram. In order to deepen and improve our knowledge about the behavior of the early photoreceptoral response, including the possible activation of interactions and correlations among the photoreceptors, we have detected and identified …

Statistics and ProbabilitySignal processingComputer scienceApplied MathematicsWavelet AnalysisMexican hat waveletWavelet transformLuminanceRetinaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Electroretinogram – a-wave – Photoreceptoral response – Wavelet analysis – Mexican hat waveletRange (mathematics)Identification (information)WaveletOrder (biology)ElectroretinographyHumansPhotoreceptor CellsBiological systemPhotic StimulationEcology Evolution Behavior and SystematicsTheory in Biosciences
researchProduct

Molecular mechanisms in developmental biology.

1996

Some general molecular mechanisms underlying development are described. Namely: those involved in the differentiation of the R7 receptor in Drosophila embryonic retina; those involved in the determination of embryonic axes and in polar cell differentiation, in Drosophila; those involved in the determination of the AB and P cell lineage and in vulva differentiation in Caenorhabditis embryos.

animal structuresbiologyCellular differentiationfungiEmbryoCell BiologyGeneral Medicinebiology.organism_classificationEmbryonic stem cellCell biologyVulvaCaenorhabditisAnimalsRNADrosophilaFemalePhotoreceptor CellsSignal transductionDrosophila (subgenus)Caenorhabditis elegansDevelopmental biologyMolecular BiologyCaenorhabditis elegansDevelopmental BiologyCell biology international
researchProduct

The binding of G-protein to rod outer segment phospholipids at the nitrogen–water interface

1989

In the visual process, one photoexcited rhodopsin (R*) catalyzes the activation of hundreds of G-proteins. It remains to be determined whether G-protein and R* find one another by membrane surface diffusion of these components (diffusion model) or by diffusion of G-protein through the aqueous phase (hopping model). A monolayer of each main rod outer segment (ROS) phospholipid interacting with a subphase containing G-protein, has been used to simulate the interaction of G-protein with the cytoplasmic surface of discal membranes. The possible diffusion of G-protein through the aqueous phase was then measured by observing its adsorption–desorption in the monolayer of each main ROS phospholipi…

biologyChemistryAqueous two-phase systemPhospholipidMembrane ProteinsCell BiologySurface pressureBiochemistryCrystallographychemistry.chemical_compoundMembraneGTP-Binding ProteinsCytoplasmRhodopsinMonolayerbiology.proteinAnimalsCattlePhotoreceptor CellsDiffusion (business)Molecular BiologyPhospholipidsBiochemistry and Cell Biology
researchProduct