Search results for "Photoreceptors"
showing 10 items of 21 documents
The Low Barrier Hydrogen Bond in the Photoactive Yellow Protein: A Vacuum Artifact Absent in the Crystal and Solution
2016
Journal of the American Chemical Society 138(51), 16620 - 16631 (2016). doi:10.1021/jacs.6b05609
Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein
2016
Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein.Science, this issue p. 725A variety of organisms have evolved mechanisms to detect and respond to light, in which the re…
The cGMP-gated channel of the rod photoreceptor — a new type of channel structure?
1990
Recents findings from Numa's laboratory reveal that there might exist a wider variety in channel protein structure than originally anticipated. Recently, the cloning has been reported of the first cGMP-gated ion channel, the vertebrate rod photoreceptor which is activated by cGMP acting from the inside of the rod outer segment membrane
Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling
2021
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP a…
CiliaCarta: An integrated and validated compendium of ciliary genes
2019
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse…
Characterization of a new murine retinal cell line (MU-PH1) with glial, progenitor and photoreceptor characteristics
2013
Unlike fish and amphibians, mammals do not regenerate retinal neurons throughout life. However, neurogenic potential may be conserved in adult mammal retina and it is necessary to identify the factors that regulate retinal progenitor cells (RPC) proliferative capacity to scope their therapeutic potential. Müller cells can be progenitors for retinal neuronal cells and can play an essential role in the restoration of visual function after retinal injury. Some members of the Toll-like receptor (TLR) family, TLR2, TLR3 and TLR4, are related to progenitor cells proliferation. Müller cells are important in retinal regeneration and stable cell lines are useful for the study of retinal stem cell bi…
On the absorbance changes in the photocycle of the photoactive yellow protein: A quantum-chemical analysis
2001
Spectral changes in the photocycle of the photoactive yellow protein (PYP) are investigated by using ab initio multiconfigurational second-order perturbation theory at the available structures experimentally determined. Using the dark ground-state crystal structure [Genick, U. K., Soltis, S. M., Kuhn, P., Canestrelli, I. L. & Getzoff, E. D. (1998) Nature (London) 392, 206–209], the ππ* transition to the lowest excited state is related to the typical blue-light absorption observed at 446 nm. The different nature of the second excited state ( n π*) is consistent with the alternative route detected at 395-nm excitation. The results suggest the low-temperature photoproduct PYP HL as the mo…
Structural photoactivation of a full-length bacterial phytochrome
2016
Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome.
Corrigendum: Resolvin D1 Modulates the Intracellular VEGF-Related miRNAs of Retinal Photoreceptors Challenged With High Glucose
2020
Abstract Stimulation of retinal photoreceptors with elevated glucose concentration (30 mM) for 96 hours, served as diabetic retinopathy in-vitro model to study Resolvin D1 (50 nM) effects on neovascularization. VEGF and anti-angiogenic miR-20a-3p, miR-20a-5p, miR-106a-5p and miR-20b expression was assessed either in photoreceptors exposed to HG or in exosomes released by those cells. High glucose increased VEGF levels and concurrently decreased anti-angiogenic miRNAs content in photoreceptors and exosomes. RvD1 reverted the effects of glucose damage in photoreceptors and exosomal pro-angiogenic potential, tested with the HUVEC angiogenesis assay. By activating FPR2 receptor, RvD1 modulated …
Rev-Erb modulates retinal visual processing and behavioral responses to light
2016
International audience; The circadian clock is thought to adjust retinal sensitivity to ambient light levels, yet the involvement of specific clock genes is poorly understood. We explored the potential role of the nuclear receptor subfamily 1, group D, member 1 (REV-ERB; or NR1D1) in this respect. In light-evoked behavioral tests, compared with wild-type littermates, Rev-Erb(-/-) mice showed enhanced negative masking at low light levels (0.1 lx). Rev-Erb(-/-) mouse retinas displayed significantly higher numbers of intrinsically photosensitive retinal ganglion cells (ipRGCs; 62% more compared with wild-type) and more intense melanopsin immunostaining of individual ipRGCs. In agreement with a…