Search results for "Physik"
showing 10 items of 293 documents
Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs
2021
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…
Forward light-by-light scattering and electromagnetic correction to hadronic vacuum polarization
2023
Lattice QCD calculations of the hadronic vacuum polarization (HVP) have reached a precision where the electromagnetic (e.m.) correction can no longer be neglected. This correction is both computationally challenging and hard to validate, as it leads to ultraviolet (UV) divergences and to sizeable infrared (IR) effects associated with the massless photon. While we precisely determine the UV divergence using the operator-product expansion, we propose to introduce a separation scale $\Lambda\sim400\;$MeV into the internal photon propagator, whereby the calculation splits into a short-distance part, regulated in the UV by the lattice and in the IR by the scale $\Lambda$, and a UV-finite long-di…
Cationic and Anionic Impact on the Electronic Structure of Liquid Water
2017
Hydration shells around ions are crucial for many fundamental biological and chemical processes. Their local physicochemical properties are quite different from those of bulk water and hard to probe experimentally. We address this problem by combining soft X-ray spectroscopy using a liquid jet and molecular dynamics (MD) simulations together with ab initio electronic structure calculations to elucidate the water–ion interaction in a MgCl2 solution at the molecular level. Our results reveal that salt ions mainly affect the electronic properties of water molecules in close vicinity and that the oxygen K-edge X-ray emission spectrum of water molecules in the first solvation shell differs signi…
Composite analysis of the tropopause inversion layer in extratropical baroclinic waves
2018
Abstract. The variability and similarities in the evolution of the tropopause inversion (TIL) layer during cyclongenesis in the North Atlantic storm track are investigated using operational meteorological analysis data (Integrated Forecast System from the European Centre for Medium-Range Weather Forecasts). For this a total amount of 130 cyclones have been analysed which evolved during the months August through October between 2010–2014 over the North Atlantic. Their paths of migration along with associated flow features in the upper troposphere/lower stratosphere (UTLS) have been tracked using the mean sea level pressure. Subsets of the 130 cyclones have been used for composite analysis us…
Flow Behavior of Chain and Star Polymers and Their Mixtures
2018
Star-shaped polymers show a continuous change of properties from flexible linear chains to soft colloids, as the number of arms is increased. To investigate the effect of macromolecular architecture on the flow properties, we employ computer simulations of single chain and star polymers as well as of their mixtures under Poiseuille flow. Hydrodynamic interactions are incorporated through the multi-particle collision dynamics (MPCD) technique, while a bead-spring model is used to describe the polymers. For the ultradilute systems at rest, the polymers are distributed uniformly in the slit channel, with a weak dependence on their number of arms. Once flow is applied, however, we find that the…
Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft
2016
Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain …
The charm-quark contribution to light-by-light scattering in the muon (−2) from lattice QCD
2022
We compute the hadronic light-by-light scattering contribution to the muon $g-2$ from the charm quark using lattice QCD. The calculation is performed on ensembles generated with dynamical $(u,d,s)$ quarks at the SU(3)$_{\rm f}$ symmetric point with degenerate pion and kaon masses of around 415 MeV. It includes the connected charm contribution, as well as the leading disconnected Wick contraction, involving the correlation between a charm and a light-quark loop. Cutoff effects turn out to be sizeable, which leads us to use lighter-than-physical charm masses, to employ a broad range of lattice spacings reaching down to 0.039 fm and to perform a combined charm-mass and continuum extrapolation.…
Fundamental bounds on qubit reset
2020
Qubit reset is a basic prerequisite for operating quantum devices, requiring the export of entropy. The fastest and most accurate way to reset a qubit is obtained by coupling the qubit to an ancilla on demand. Here, we derive fundamental bounds on qubit reset in terms of maximum fidelity and minimum time, assuming control over the qubit and no control over the ancilla. Using the Cartan decomposition of the Lie algebra of qubit plus two-level ancilla, we identify the types of interaction and controls for which the qubit can be purified. For these configurations, we show that a time-optimal protocol consists of purity exchange between qubit and ancilla brought into resonance, where the maximu…
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
2017
On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…
Terahertz Spin‐to‐Charge Conversion by Interfacial Skew Scattering in Metallic Bilayers
2021
The efficient conversion of spin to charge transport and vice versa is of major relevance for the detection and generation of spin currents in spin‐based electronics. Interfaces of heterostructures are known to have a marked impact on this process. Here, terahertz (THz) emission spectroscopy is used to study ultrafast spin‐to‐charge‐current conversion (S2C) in about 50 prototypical F|N bilayers consisting of a ferromagnetic layer F (e.g., Ni81Fe19, Co, or Fe) and a nonmagnetic layer N with strong (Pt) or weak (Cu and Al) spin‐orbit coupling. Varying the structure of the F/N interface leads to a drastic change in the amplitude and even inversion of the polarity of the THz charge current. Rem…