Search results for "Physik"

showing 10 items of 293 documents

Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

2021

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…

gravitational radiation: anisotropyPhysics and Astronomy (miscellaneous)gravitational radiation: stochasticAstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsCosmology & Astrophysicsenergy: fluxenergy: densitygravitational radiation: energyLIGOQCQBPhysicsSettore FIS/01Spectral indexPhysicsGalactic CenterAmplitudeGeneral relativitySidereal timePhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]gravitational radiation: power spectrumGravitationdata analysis methodAnisotropic stochastic gravitational-wave backgroundExperimental studies of gravityFOS: Physical sciencesO3O2General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsStochastic Background Gravitational Waves LIGO Virgo O1 O2 O3O1Gravitational wavesGeneral Relativity and Quantum CosmologyUPPER LIMITSstatistical analysis0103 physical sciencesadvanced LIGO and Virgoddc:530KAGRAKAGRACosmology & Astrophysics010306 general physicsSTFCgravitational waves; LIGO; VirgoGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundRCUKGalaxyLIGOVIRGOgravitational radiation: emissionspectrum: densityRADIATIONCROSS-CORRELATION SEARCHStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikgalaxyExperimental studies of gravity; General relativity; Gravitational waves
researchProduct

Forward light-by-light scattering and electromagnetic correction to hadronic vacuum polarization

2023

Lattice QCD calculations of the hadronic vacuum polarization (HVP) have reached a precision where the electromagnetic (e.m.) correction can no longer be neglected. This correction is both computationally challenging and hard to validate, as it leads to ultraviolet (UV) divergences and to sizeable infrared (IR) effects associated with the massless photon. While we precisely determine the UV divergence using the operator-product expansion, we propose to introduce a separation scale $\Lambda\sim400\;$MeV into the internal photon propagator, whereby the calculation splits into a short-distance part, regulated in the UV by the lattice and in the IR by the scale $\Lambda$, and a UV-finite long-di…

hadronic contributionsNuclear and High Energy Physicsfusionmassless530 PhysicsFOS: Physical sciences[PHYS.HLAT] Physics [physics]/High Energy Physics - Lattice [hep-lat]operator product expansionhadronicHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)vacuum polarizationultravioletquantum electrodynamicstree approximationphoton photonlattice[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]effectscatteringphotonscattering amplitudeHigh Energy Physics - Lattice (hep-lat)lattice field theory530 Physikradiative correctionssum rule[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenologyelectromagneticfinite size[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]infrareddispersionlight-by-light scatteringpropagatorcorrectionJournal of High-Energy Physics
researchProduct

Cationic and Anionic Impact on the Electronic Structure of Liquid Water

2017

Hydration shells around ions are crucial for many fundamental biological and chemical processes. Their local physicochemical properties are quite different from those of bulk water and hard to probe experimentally. We address this problem by combining soft X-ray spectroscopy using a liquid jet and molecular dynamics (MD) simulations together with ab initio electronic structure calculations to elucidate the water–ion interaction in a MgCl2 solution at the molecular level. Our results reveal that salt ions mainly affect the electronic properties of water molecules in close vicinity and that the oxygen K-edge X-ray emission spectrum of water molecules in the first solvation shell differs signi…

hydration cellsAb initio02 engineering and technologyElectronic structure010402 general chemistry01 natural sciencesBathochromic shiftMoleculeGeneral Materials ScienceEmission spectrumPhysical and Theoretical ChemistrySpectroscopyta116Lone pairliquid waterta114ionitChemistryInstitut für Physik und Astronomie021001 nanoscience & nanotechnologyelectronic structure0104 chemical sciencesSolvation shell13. Climate actionChemical physicsionsAtomic physics0210 nano-technology
researchProduct

Composite analysis of the tropopause inversion layer in extratropical baroclinic waves

2018

Abstract. The variability and similarities in the evolution of the tropopause inversion (TIL) layer during cyclongenesis in the North Atlantic storm track are investigated using operational meteorological analysis data (Integrated Forecast System from the European Centre for Medium-Range Weather Forecasts). For this a total amount of 130 cyclones have been analysed which evolved during the months August through October between 2010–2014 over the North Atlantic. Their paths of migration along with associated flow features in the upper troposphere/lower stratosphere (UTLS) have been tracked using the mean sea level pressure. Subsets of the 130 cyclones have been used for composite analysis us…

lcsh:Chemistrylcsh:QD1-999530 Physics530 Physiklcsh:Physicslcsh:QC1-999Atmospheric Chemistry and Physics
researchProduct

Flow Behavior of Chain and Star Polymers and Their Mixtures

2018

Star-shaped polymers show a continuous change of properties from flexible linear chains to soft colloids, as the number of arms is increased. To investigate the effect of macromolecular architecture on the flow properties, we employ computer simulations of single chain and star polymers as well as of their mixtures under Poiseuille flow. Hydrodynamic interactions are incorporated through the multi-particle collision dynamics (MPCD) technique, while a bead-spring model is used to describe the polymers. For the ultradilute systems at rest, the polymers are distributed uniformly in the slit channel, with a weak dependence on their number of arms. Once flow is applied, however, we find that the…

lcsh:QD241-441starsseparationlcsh:Organic chemistry530 Physicschainsmicrofluidicssimulations530 PhysikArticlepolymersPoiseuille flowPolymers
researchProduct

Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

2016

Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain …

lcsh:TA715-787530 PhysicsHALOlcsh:Earthwork. Foundationsddc:550Atmosphärische Spurenstoffecloud probe measurementslcsh:TA170-171530 PhysikParticle air Speedlcsh:Environmental engineering
researchProduct

The charm-quark contribution to light-by-light scattering in the muon (−2) from lattice QCD

2022

We compute the hadronic light-by-light scattering contribution to the muon $g-2$ from the charm quark using lattice QCD. The calculation is performed on ensembles generated with dynamical $(u,d,s)$ quarks at the SU(3)$_{\rm f}$ symmetric point with degenerate pion and kaon masses of around 415 MeV. It includes the connected charm contribution, as well as the leading disconnected Wick contraction, involving the correlation between a charm and a light-quark loop. Cutoff effects turn out to be sizeable, which leads us to use lighter-than-physical charm masses, to employ a broad range of lattice spacings reaching down to 0.039 fm and to perform a combined charm-mass and continuum extrapolation.…

magnetic momentPhysics and Astronomy (miscellaneous)530 PhysicsHigh Energy Physics::LatticeNuclear TheoryK: massFOS: Physical sciencesmesonquarkHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeSU(3)muonNuclear ExperimentEngineering (miscellaneous)lattice[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologyphoton photon: scatteringlattice field theory530 Physikcharm: massHigh Energy Physics - Phenomenologycorrelation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentThe European Physical Journal C
researchProduct

Fundamental bounds on qubit reset

2020

Qubit reset is a basic prerequisite for operating quantum devices, requiring the export of entropy. The fastest and most accurate way to reset a qubit is obtained by coupling the qubit to an ancilla on demand. Here, we derive fundamental bounds on qubit reset in terms of maximum fidelity and minimum time, assuming control over the qubit and no control over the ancilla. Using the Cartan decomposition of the Lie algebra of qubit plus two-level ancilla, we identify the types of interaction and controls for which the qubit can be purified. For these configurations, we show that a time-optimal protocol consists of purity exchange between qubit and ancilla brought into resonance, where the maximu…

media_common.quotation_subjectFOS: Physical sciencesQuantum controlFidelityTopology53001 natural sciences010305 fluids & plasmassymbols.namesakeComputer Science::Emerging TechnologiesDimension (vector space)0103 physical sciencesQuantum information architectures & platformsQuantum information010306 general physicsQuantum information architectures & platformsmedia_commonPhysicsQuantum Physics500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikHilbert spaceQuantum controlQuantum PhysicsQubitsymbolsQuantum InformationQuantum Physics (quant-ph)Reset (computing)
researchProduct

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

neutron star: binary[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]X-ray binaryADVANCED LIGOAstrophysicsKilonovagravitational waves; LIGO; binary neutron star inspiralspin01 natural sciencesLIGOGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Electromagnetic observationsGravitational-wave signals3100 General Physics and AstronomyPoint MassesAstrophysics - High Energy Astrophysical PhenomenaBlack-Hole MergersBinary neutron starsBlack HolesX-ray bursterCoalescing BinariesAstrophysics::High Energy Astrophysical Phenomena10192 Physics InstituteGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesGravitational wavesNeutron starsPhysics and Astronomy (all)ddc:530Electromagnetic spectraNeutrons010308 nuclear & particles physicsVirgoGamma raysAstronomyRCUKVIRGOelectromagneticgravitational radiation: emissionStellar black holeGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact Binariesbinary: masscosmological modelAstronomyGeneral Physics and AstronomyAstrophysicsneutron starsGamma ray burstsGeneral Relativity and Quantum CosmologyGravitational wave detectorsUniverseDENSE MATTER010303 astronomy & astrophysicsastro-ph.HEPhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectsFalse alarm rateEQUATION-OF-STATEMergers and acquisitionsgravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]530 PhysicsMERGERSGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstgravitational radiation: direct detectionMerging[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]GAMMA-RAY BURSTLIGO (Observatory)binary: coalescenceGravitational waves neutron stars gamma-ray burst LIGO Virgo0103 physical sciencesGW151226MASSESSTFCAstrophysics::Galaxy AstrophysicsPhysiqueGravitational wavegravitational radiationPULSARgravitational radiation detectorNeutron starPhysics and AstronomygravitationRADIATIONDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikbinary neutron star inspiralSignal detectionPHYS REV LETT PHYSICAL REVIEW LETTERS
researchProduct

Terahertz Spin‐to‐Charge Conversion by Interfacial Skew Scattering in Metallic Bilayers

2021

The efficient conversion of spin to charge transport and vice versa is of major relevance for the detection and generation of spin currents in spin‐based electronics. Interfaces of heterostructures are known to have a marked impact on this process. Here, terahertz (THz) emission spectroscopy is used to study ultrafast spin‐to‐charge‐current conversion (S2C) in about 50 prototypical F|N bilayers consisting of a ferromagnetic layer F (e.g., Ni81Fe19, Co, or Fe) and a nonmagnetic layer N with strong (Pt) or weak (Cu and Al) spin‐orbit coupling. Varying the structure of the F/N interface leads to a drastic change in the amplitude and even inversion of the polarity of the THz charge current. Rem…

spectroscopyMaterials sciencespin-to-charge conversion530 PhysicsTerahertz radiationterahertz emission spectroscopyterahertz emission02 engineering and technologyElectron010402 general chemistry5307. Clean energy01 natural sciencesGeneral Materials ScienceSpectroscopySpin-½Condensed matter physicsScatteringMechanical EngineeringCharge (physics)Heterojunction530 Physik021001 nanoscience & nanotechnology0104 chemical sciencesskew scatteringFerromagnetismMechanics of Materialsinterface; skew scattering; spin-to-charge conversion; terahertz emission spectroscopyinterface0210 nano-technologyAdvanced Materials
researchProduct