Search results for "Picosecond"

showing 10 items of 88 documents

Injection and ultrafast regeneration in dye-sensitized solar cells

2014

Injection of an electron from the excited dye molecule to the semiconductor is the initial charge separation step in dye-sensitized solar cells (DSC's). Though the dynamics of the forward injection process has been widely studied, the results reported so far are controversial, especially for complete DSC's. In this work, the electron injection in titanium dioxide (TiO2) films sensitized with ruthenium bipyridyl dyes N3 and N719 was studied both in neat solvent and in a typical iodide/triiodide (I-/I3 -) DSC electrolyte. Transient absorption (TA) spectroscopy was used to monitor both the formation of the oxidized dye and the arrival of injected electrons to the conduction band of TiO2. Emiss…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyta221Analytical chemistrychemistry.chemical_elementElectrolyteNanosecondPhotochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRutheniumDye-sensitized solar cellchemistry.chemical_compoundGeneral EnergychemistryPicosecondTitanium dioxideUltrafast laser spectroscopySDG 7 - Affordable and Clean EnergyPhysical and Theoretical ChemistryTriiodideta116
researchProduct

Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein

2016

Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein.Science, this issue p. 725A variety of organisms have evolved mechanisms to detect and respond to light, in which the re…

0301 basic medicinePhotoreceptorsTime FactorsPhotoisomerizationLightProtein ConformationPhotochemistryPhotoreceptors MicrobialMYOGLOBINProtein structureMicrobialX-RAY-DIFFRACTIONPHOTOISOMERIZATIONMOTIONSchromophoresta116MultidisciplinarySPECTROSCOPYCrystallographyChemistryPhotochemical ProcessesTime resolved crystallographyTIMEMultidisciplinary SciencesPicosecondFemtosecondphotoactive proteinsScience & Technology - Other Topicsddc:500IsomerizationStereochemistryGeneral Science & TechnologyConjugated systemArticle03 medical and health sciencesBacterial ProteinsIsomerismEXCITATIONx-ray crystallographyPhotonsScience & TechnologyPHOTOCYCLEta114CHROMOPHOREta1182PATHWAYSChromophore030104 developmental biologyfree-electron laserssense organstrans-cis isomerization
researchProduct

Ultrafast structural changes within a photosynthetic reaction centre

2021

Nature <London> / Physical science 589, 310 - 314 (2021). doi:10.1038/s41586-020-3000-7

0301 basic medicinePhotosynthetic reaction centreChlorophyllModels MolecularklorofylliCytoplasmUbiquinonePhotosynthetic Reaction Center Complex ProteinsElectrons02 engineering and technologyPhotochemistrymedicine.disease_cause530yhteyttäminenbakteeritElectron Transport03 medical and health sciencesElectron transfermedicineMoleculeddc:530BacteriochlorophyllsbioenergetiikkaComputingMilieux_MISCELLANEOUSHyphomicrobiaceaeMultidisciplinaryBinding SitesCrystallography[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]ChemistryBlastochloris viridisLaserskalvot (biologia)PheophytinsBiological membraneVitamin K 2021001 nanoscience & nanotechnologyAcceptor030104 developmental biologyPicosecondFemtosecondsense organsProtons0210 nano-technologyOxidation-Reductionröntgenkristallografia
researchProduct

Photobleaching effects onin vivoskin autofluorescence lifetime

2015

The autofluorescence lifetime of healthy human skin was measured using excitation provided by a picosecond diode laser operating at a wavelength of 405 nm and with fluorescence emission collected at 475 and 560 nm. In addition, spectral and temporal responses of healthy human skin and intradermal nevus in the spectral range 460 to 610 nm were studied before and after photobleaching. A decrease in the autofluorescences lifetimes changes was observed after photobleaching of human skin. A three-exponential model was used to fit the signals, and under this model, the most significant photoinduced changes were observed for the slowest lifetime component in healthy skin at the spectral range 520 …

AdultTime FactorsMaterials scienceLightPhotochemistryBiomedical EngineeringHuman skinAbsorption (skin)LipofuscinBiomaterialsNuclear magnetic resonanceFlavinsIntradermal NevusmedicineHumansNevusskin and connective tissue diseasesPhospholipidsSkinInflammationPhotobleachingbusiness.industryEquipment DesignMiddle AgedHandmedicine.diseasePhotobleachingFluorescenceAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAutofluorescenceSpectrometry FluorescenceOxyhemoglobinsPicosecondFlavin-Adenine DinucleotideNevus IntradermalOptoelectronicsbusinessJournal of Biomedical Optics
researchProduct

Polarization Modulation Instability in All-Normal Dispersion Microstructured Optical Fibers with Quasi-Continuous 1064 nm Pump

2019

Polarization modulation instability (PMI) is a form of modulation instability that can exist in weakly birefringent optical fibers [1]. Sidebands can be generated by this effect when a polarization mode of the birefringent fiber is excited with an intense optical pump. The polarization state of the sidebands is orthogonal to the polarization of the pump signal. PMI has been observed in microstructured optical fibers (MOFs). PMI was reported in a large-air-filling fraction MOF that was pumped in the normal dispersion regime with visible light [2]. The coherent degradation of femtosecond supercontinuum light generated in all-normal dispersion (ANDi) MOFs due to PMI was recently investigated […

BirefringenceOptical fiberMaterials sciencebusiness.industryComputer Science::Information RetrievalPhysics::OpticsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Polarization (waves)Supercontinuumlaw.inventionOptical pumpinglawPicosecondExcited stateFemtosecondOptoelectronicsbusiness2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct

A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots

2014

The time resolved UV-fluorescence in ZnO quantum dots has been investigated using femtosecond laser spectroscopy. The measurements were performed as a function of particle size for particles between 3 and 7 nm in diameter, which are in the quantum confined regime. A red shift in the fluorescence maximum is seen while increasing the particle size, which correlates with the shift in band gap due to quantum confinement. The energy difference between the UV-fluorescence and the band gap does, however, increase for the smaller particles. For 3.7 nm particles the fluorescence energy is 100 meV smaller than the band gap energy, whereas it is only 20 meV smaller for the largest particles. This indi…

ChemistryQuantum dotBand gapExcitonPicosecondGeneral Physics and AstronomyTrappingParticle sizePhysical and Theoretical ChemistryAtomic physicsFluorescenceQuantumPhys. Chem. Chem. Phys.
researchProduct

Rotation correlation time as a measure of microviscosity of excited state isomerization reactions of three cyanine dyes in n-alcohol solutions

1994

Abstract Rotation correlation times of three chemically similar cyanine dyes of different sizes in n -alcohol solutions have been recorded at several temperatures by using polarized picosecond spectroscopy. For all three dyes the linear temperature dependencies of τ or on η/ T were observed to be independent of solvent up to viscosities of about 60 cP. The rotational motion of the dyes proceeds at much slower rates than the excited state isomerization in viscous solutions of the same fluidity. Isomerization seems to depend on special solvent-induced changes of the force field of the reactant and clearly proceeds faster, especially for the two larger dyes, than predicted by Kramers' theory a…

ChemistryRotation around a fixed axisGeneral Physics and AstronomyThermodynamicsPhotochemistryMicroviscositySolventchemistry.chemical_compoundExcited statePicosecondPhysics::Chemical PhysicsPhysical and Theoretical ChemistryCyanineSpectroscopyIsomerizationChemical Physics Letters
researchProduct

Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states.

2001

Electron injection from the transition metal complex Ru(dcbpy)(2)(NCS)(2) (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) into a titanium dioxide nanocrystalline film occurs on the femto- and picosecond time scales. Here we show that the dominating part of the electron transfer proceeds extremely rapidly from the initially populated, vibronically nonthermalized, singlet excited state, prior to electronic and nuclear relaxation of the molecule. The results are especially relevant to the understanding and design of molecular-based photovoltaic devices and artificial photosynthetic assemblies.

Chemistrybusiness.industryGeneral ChemistryElectronic structurePhotochemistryBiochemistryCatalysisNanocrystalline materialElectron transferColloid and Surface ChemistrySemiconductorTransition metalPicosecondExcited stateSinglet stateAtomic physicsbusinessJournal of the American Chemical Society
researchProduct

CHLOROPHYLL a AGGREGATES IN HYDROCARBON SOLUTION, A PICOSECOND SPECTROSCOPY AND MOLECULAR MODELING STUDY

1993

Chlorophyll a aggregates in 3-methylpentane solution have been studied by using picosecond absorption and fluorescence spectroscopy and molecular modeling. Chlorophyll a aggregates give rise to reversible temperature changes in the absorption and fluorescence spectra. Time-dependent anisotropies were used to estimate rotational correlation times of the aggregates. These were indicative of the sizes of the aggregates. The rotational diffusion of the monomer and the two identified aggregates was hydrodynamic over the viscosity range studied (0.29–1.8 cP). Molecular mechanics calculations were used to predict the minimum energy structures of several chlorophyll a dimers suggested earlier in th…

Chlorophyll a010304 chemical physicsExcitonRotational diffusionGeneral Medicine010402 general chemistryPhotochemistry01 natural sciencesBiochemistryFluorescence spectroscopy0104 chemical scienceschemistry.chemical_compoundViscositychemistryChemical physicsPicosecond0103 physical sciencesPhysical and Theoretical ChemistryAbsorption (electromagnetic radiation)SpectroscopyPhotochemistry and Photobiology
researchProduct

Characterization of the Fast and Slow Reversible Components of Non-Photochemical Quenching in Isolated Pea Thylakoids by Picosecond Time-Resolved Chl…

1999

The fast and slow reversible components of non-photochemical chlorophyll fluorescence quenching commonly assigned to the qE and the qI mechanism have been studied in isolated pea thylakoids which were prepared from leaves after a moderate photoinhibitory treatment. Chlorophyll fluorescence decays were measured at picosecond resolution and analyzed on the basis of the heterogeneous exciton/radical pair equilibrium model. Our results show that the fast reversible non-photochemical quenching is completely assigned to the PS II antenna and is related to zeaxanthin. The slow reversible qI type quenching is located at the PS II reaction center and involves enhanced nonradiative decay of the prima…

ChlorophyllPhotosynthetic reaction centrePhotoinhibitionQuenching (fluorescence)ChemistryNon-photochemical quenchingPeasPhotochemistryBiochemistryKineticsSpectrometry FluorescencePicosecondExcited stateThylakoidChlorophyll fluorescencePlant ProteinsBiochemistry
researchProduct