Search results for "Pierre Auger"
showing 10 items of 85 documents
Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory
2010
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is describe…
Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks
2021
The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from $10^{17}~$eV up to more than $10^{20}~$eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightfo…
Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory
2008
A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…
Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers
2016
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accura…
Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope
2020
Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to selec…
The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory
2021
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Be…
The Pierre Auger Observatory: latest results and future perspectives
2018
The Pierre Auger Observatory is the largest ultrahigh-energy cosmic ray observatory in the world. The huge amount of high quality data collected since 2004 up to now led to great improvements in our knowledge of the ultra-energetic cosmic rays. The suppression of the cosmic-ray flux at highest energies was clearly established, and the extra-galactic origin of these particles was confirmed. On the other hand, measurements of the depth of shower maximum indicate a puzzling trend in the mass composition of cosmic rays at energy around the ankle up to the highest energy. The just started upgrade of the Observatory, dubbed AugerPrime, will improve the identification of the mass of primaries allo…
FRAM—The Robotic Telescope for the Monitoring of the Wavelength Dependence of the Extinction: Description of Hardware, Data Analysis, and Results
2010
FRAM-F/(Ph)otometric Robotic Atmospheric Monitor is one of the atmospheric monitoring instruments at the Pierre Auger Observatory in Argentina. FRAM is an optical telescope equipped with CCD cameras and photometer, and it automatically observes a set of selected standard stars. Primarily, FRAM observations are used to obtain the wavelength dependence of the light extinction. FRAM telescope is also able to observe secondary astronomical targets, and namely the detection of optical counterparts of gamma-ray bursts has already proven to be successful. Finally, a wide-field CCD camera of FRAM can be used for rapid monitoring of atmospheric conditions along the track of particularly interesting …
The aperture for UHE tau neutrinos of the Auger fluorescence detector using a Digital Elevation Map
2005
We perform a new study of the chances of the fluorescence detector (FD) at the Pierre Auger Observatory to detect the tau leptons produced by Earth-skimming ultra high energy tau neutrinos. We present a new and more detailed evaluation of the effective aperture of the FD that considers a reliable fiducial volume for the experimental set up. In addition, we take into account the real elevation profile of the area near Auger. We find a significant increase in the number of expected events with respect to the predictions of a previous semi-analytical determination, and our results show the enhancement effect for neutrino detection from the presence of the near mountains.
Neutrino searches at the Pierre Auger Observatory
2013
Abstract The surface detector array of the Pierre Auger Observatory is sensitive to ultra-high energy neutrinos in the cosmic radiation. Neutrinos can interact in the atmosphere close to ground (down-going) and, for tau neutrinos, through the Earth-skimming mechanism (up-going) where a tau lepton is produced in the Earth crust that can emerge and decay in the atmosphere. Both types of neutrino-induced events produce an inclined particle air shower that can be identified by the presence of a broad time structure of signals in the water-Cherenkov detectors. We discuss the neutrino identification criteria used and present the corresponding limits on the diffuse and point-like source fluxes.