Search results for "Pillar"
showing 10 items of 877 documents
Phase diagram of polymer blends in confined geometry
2001
Within self-consistent field theory we study the phase behavior of a symmetrical binary AB polymer blend confined into a thin film. The film surfaces interact with the monomers via short range potentials. One surface attracts the A component and the corresponding smei-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surfaces fields to the interface localization/delocalization transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exh…
Capillary Waves in a Colloid-Polymer Interface
2004
The structure and the statistical fluctuations of interfaces between coexisting phases in the Asakura-Oosawa (AO) model for a colloid--polymer mixture are analyzed by extensive Monte Carlo simulations. We make use of a recently developed grand canonical cluster move with an additional constraint stabilizing the existence of two interfaces in the (rectangular) box that is simulated. Choosing very large systems, of size LxLxD with L=60 and D=120, measured in units of the colloid radius, the spectrum of capillary wave-type interfacial excitations is analyzed in detail. The local position of the interface is defined in terms of a (local) Gibbs surface concept. For small wavevectors capillary wa…
Monte Carlo Simulations of Surfaces and Interfaces in Materials
1996
Many applications of materials are controlled by their surface and interface properties. In particular, metallic alloys (but also mixed dielectric materials and amorphous polymer blends) are not homogeneously mixed on a microscopic length scale, although they are macroscopically homogeneous. Depending on the preparation of the sample, there exists a heterophase microstructure, with typical domain sizes, e.g. in the 1 to 102 µm range, separated by interfaces between them. The physical properties of such intrinsic interfaces (grain boundaries between small crystallites, antiphase domain boundaries in ordered alloys, Bloch walls in magnetic materials, etc.) are not only an important controllin…
Effects of finite thickness on interfacial widths in confined thin films of coexisting phases
1999
The capillary broadening of a 2-phase interface is investigated both experimentally and theoretically. When a binary mixture in a thin film with thickness D segregates into two coexisting phases the interface between the two phases may form parallel to the substrate due to preferential surface attraction of one of the components. We show that the interfacial profile (of intrinsic width w0) is broadened due to capillary waves, which lead to fluctuations, of correlation length of the local interface positions in the directions parallel to the confining walls. We postulate that acts as an upper cutoff for the spectrum of capillary waves on the interface, so that the effective mean square inter…
Computer simulation studies of finite-size broadening of solid–liquid interfaces: from hard spheres to nickel
2009
Using Molecular Dynamics (MD) and Monte Carlo (MC) simulations interfacial properties of crystal-fluid interfaces are investigated for the hard sphere system and the one-component metallic system Ni (the latter modeled by a potential of the embedded atom type). Different local order parameters are considered to obtain order parameter profiles for systems where the crystal phase is in coexistence with the fluid phase, separated by interfaces with (100) orientation of the crystal. From these profiles, the mean-squared interfacial width w^2 is extracted as a function of system size. We rationalize the prediction of capillary wave theory that w^2 diverges logarithmically with the lateral size o…
PHASE EQUILIBRIA IN THIN POLYMER FILMS
2001
Within self-consistent field theory and Monte Carlo simulations the phase behavior of a symmetrical binary AB polymer blend confined into a thin film is studied. The film surfaces interact with the monomers via short ranged potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to interface localization/delocalization transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter…
Observation of topological gravity-capillary waves in a water wave crystal
2019
The discovery of topological phases of matter, initially driven by theoretical advances in quantum condensed matter physics, has been recently extended to classical wave systems, reaching out to a wealth of novel potential applications in signal manipulation and energy concentration. Despite the fact that many realistic wave media (metals at optical frequencies, polymers at ultrasonic frequencies) are inherently dispersive, topological wave transport in photonic and phononic crystals has so far been limited to ideal situations and proof-of-concept experiments involving dispersionless media. Here, we report the first experimental demonstration of topological edge states in a classical water …
Nucleation and cavitation in parahydrogen
2012
We have used a density functional approach to investigate thermal homogeneous nucleation and cavitation in parahydrogen. The effect of electrons as seeds of heterogeneous cavitation in liquid parahydrogen is also discussed within the capillary model. (C) 2011 Elsevier B.V. All rights reserved.
Assessment of alterations in barrier functionality and induction of proinflammatory and cytotoxic effects after sulfur mustard exposure of an in vitr…
2007
Acute lung injury after sulfur mustard (SM) inhalation is characterized by massive, localized hemorrhage and alveolar edema, which implies severe disruption of the vascular and distal airway barrier. In this study, we tested a recently established in vitro coculture model of the alveolo-capillary barrier for its applicability to investigate acute toxic effects of SM at the human respiratory unit. The epithelial compartment of cocultures was exposed to varying concentrations of SM (0-1000 microM; t = 30 min). Following exposure, functional and structural barrier integrity of cocultures was monitored over a period of 24 h. A 50% reduction of transbilayer electrical resistance (TER) within 12-…
Protection of Social Rights as a Permament Challenge for the European Union
2021
Social rights protection in the European Union has undergone significant development. Currently their protection is regulated by relevant treaty provisions and the Charter of Fundamental Rights (Charter), both of a primary law nature, as well as by the non-binding European Pillar of Social Rights (Pillar). The aim of the paper is the assessment of the social rights protection in the EU, and whether all social rights provided in the CFR have their counterparts in the EPSR, hence whether and in what way the EPSR assists the actual exercise of social rights provided by the CFR. Comparing the content of the above-mentioned legal instruments makes it possible to answer the question whether all s…