6533b7dbfe1ef96bd1271477

RESEARCH PRODUCT

Observation of topological gravity-capillary waves in a water wave crystal

Abdelkrim KhelifMuamer KadicYuning GuoNicolas LaforgeFranck CholletRomain FleuryVincent Laude

subject

Capillary waveWave propagationFOS: Physical sciencesGeneral Physics and AstronomyInsulator (electricity)Topology01 natural sciences010305 fluids & plasmas[SPI.MAT]Engineering Sciences [physics]/MaterialsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsDispersion (water waves)QuantumPhysics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Condensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryFluid Dynamics (physics.flu-dyn)Valley PhysicsPhysics - Fluid DynamicsTopological InsulatorsWater wavesTopological insulatorUltrasonic sensorPhotonicsbusiness

description

The discovery of topological phases of matter, initially driven by theoretical advances in quantum condensed matter physics, has been recently extended to classical wave systems, reaching out to a wealth of novel potential applications in signal manipulation and energy concentration. Despite the fact that many realistic wave media (metals at optical frequencies, polymers at ultrasonic frequencies) are inherently dispersive, topological wave transport in photonic and phononic crystals has so far been limited to ideal situations and proof-of-concept experiments involving dispersionless media. Here, we report the first experimental demonstration of topological edge states in a classical water wave system supporting highly dispersive wave propagation, in the intermediate regime of gravity-capillary waves. We use a stochastic method to rigorously take into account the inherent dispersion and devise a water wave crystal insulator supporting valley-selective transport at topological domain walls. Our measurements, performed with a high-speed camera under stroboscopic illumination, unambiguously demonstrate the possibility of valley-locked transport of water waves.

https://hal.archives-ouvertes.fr/hal-02371018/file/d4f841d6-1832-4950-8c05-ec101f5b36a5-author.pdf