Search results for "Plagioclase"

showing 10 items of 52 documents

Sulfide enrichment at an oceanic crust-mantle transition zone: Kane Megamullion (23°N, MAR)

2018

Abstract The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30′N, 45°20′W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several…

010504 meteorology & atmospheric sciencesGeochemistryCrustengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)Oceanic core complexGeochemistry and PetrologyUltramafic rockOceanic crustTransition zoneengineeringPlagioclasePyrrhotiteGeology0105 earth and related environmental sciencesGeochimica et Cosmochimica Acta
researchProduct

Origin of primitive ultra-calcic arc melts at crustal conditions — Experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands

2016

International audience; To interpret primitive magma compositions in the Aeolian arc and contribute to a better experimental characterization of ultra-calcic arc melts, equilibrium phase relations have been determined experimentally for the La Sommata basalt (Som-1, Vulcano, Aeolian arc). Som-1 (Na2O + K2O = 4.46 wt.%, CaO = 12.97 wt.%, MgO = 8.78 wt.%, CaO/Al2O3 = 1.03) is a reference primitive ne-normative arc basalt with a strong ultra-calcic affinity. The experiments have been performed between 44 and 154 MPa, 1050 and 1150 °C and from NNO + 0.2 to NNO + 1.9. Fluid-present conditions were imposed with H2O–CO2 mixtures yielding melt H2O concentrations from 0.7 to 3.5 wt.%. Phases encount…

010504 meteorology & atmospheric sciencesGeochemistryLiquidusengineering.material010502 geochemistry & geophysics01 natural sciencesPrimitive arc magmasMantle (geology)law.inventionVulcanoGeochemistry and PetrologylawUltra-calcic[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyPlagioclaseCrystallizationPetrology0105 earth and related environmental sciencesBasaltAeolian arcOlivineSettore GEO/07 - Petrologia E PetrografiaCrustGeophysics13. Climate actionPrimitive arc magmas Ultra-calcic Experiments Phase equilibria Vulcano Aeolian arcengineeringPhenocrystPhase equilibriaExperimentsGeology
researchProduct

Quantitative models of hydrothermal fluid–mineral reaction: The Ischia case

2013

Abstract The intricate pathways of fluid–mineral reactions occurring underneath active hydrothermal systems are explored in this study by applying reaction path modelling to the Ischia case study. Ischia Island, in Southern Italy, hosts a well-developed and structurally complex hydrothermal system which, because of its heterogeneity in chemical and physical properties, is an ideal test sites for evaluating potentialities/limitations of quantitative geochemical models of hydrothermal reactions. We used the EQ3/6 software package, version 7.2b, to model reaction of infiltrating waters (mixtures of meteoric water and seawater in variable proportions) with Ischia’s reservoir rocks (the Mount Ep…

010504 meteorology & atmospheric sciencesGeochemistryMineralogyengineering.material010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationHydrothermal systemGeochemistry and PetrologyMount Epomeo Green TuffPlagioclaseHydrothermal fluidIschia Island Reaction path modelling EQ3/60105 earth and related environmental sciencesMineralSettore GEO/08 - Geochimica E Vulcanologia13. Climate actionMeteoric waterengineeringPhenocrystSeawaterIschiaSaturation (chemistry)Clay mineralsGeologyGeochimica et Cosmochimica Acta
researchProduct

Melt inclusions track melt evolution and degassing of Etnean magmas in the last 15 ka

2019

We present major elements compositions and volatiles contents of olivine-hosted melt inclusions from Etna volcano (Italy), which extend the existing database with the aim of interpreting the chemical variability of Etnean magmas over the last 15 ka. Olivine phenocrysts were selected from the most primitive Fall Stratified (FS) eruptive products of picritic composition (Mg# = 67–70, Fo 89–91 ), the Mt. Spagnolo eccentric lavas (Mg# = 52–64, Fo 82–88 ) and among the more recent 2002–2013 eruptive products (Mg# = 33–53, Fo 68–83 ). Crystal fractionation and degassing processes were modeled at temperatures of 1050–1300 °C, pressures <500 MPa, and oxygen fugacity between 1 and 2 log units abo…

010504 meteorology & atmospheric sciencesGeochemistryVolatile contentengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)Mineral redox bufferDegassingGeochemistry and PetrologySilicate melt inclusionPlagioclase0105 earth and related environmental sciencesMelt inclusionsFractional crystallization (geology)OlivineSpinelMelt differentiationGeologyEtna Silicate melt inclusions Volatile contents Melt differentiation Degassing13. Climate action[SDU]Sciences of the Universe [physics]engineeringPhenocrystEtnaGeology
researchProduct

Extensive, water-rich magma reservoir beneath southern Montserrat

2016

South Soufriere Hills and Soufriere Hills volcanoes are two km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufriere Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water…

010504 meteorology & atmospheric sciencesGeochemistrysub-05Pyroxeneengineering.material010502 geochemistry & geophysics01 natural sciencesMushGeochemistry and PetrologyPlagioclase0105 earth and related environmental sciencesMelt inclusionsBasaltgeographygeography.geographical_feature_categoryAndesiteWaterGeologyAndesiteVolcano13. Climate actionMagmaengineeringInclusion (mineral)Melt inclusionsSIMSGeologyPyroxenes
researchProduct

Antisana volcano: A representative andesitic volcano of the eastern cordillera of Ecuador: Petrography, chemistry, tephra and glacial stratigraphy

2017

Antisana volcano is representative of many active andesitic strato-volcanoes of Pleistocene age in Ecuador's Eastern Cordillera. This study represents the first modern geological and volcanological investigation of Antisana since the late 1890's; it also summarizes the present geochemical understanding of its genesis. The volcano's development includes the formation and destruction of two older edifices (Antisana I and II) during some 400 + ka. Antisana II suffered a sector collapse about 15,000 years ago which was followed by the birth and growth of Antisana III. During its short life Antisana III has generated >= 50 eruptions of small to medium intensity, often associated with andesitic t…

010504 meteorology & atmospheric sciencesLavaEarth scienceGeochemistryengineering.material010502 geochemistry & geophysics01 natural sciencesLong-lived evolving andesitic volcanism[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyPlagioclaseTephra0105 earth and related environmental sciencesEarth-Surface Processesgeographygeography.geographical_feature_categorybiologyAndesitesAndesiteNorthern Volcanic ZoneGeologybiology.organism_classificationVolcano13. Climate actionAntisanaMagmaengineeringPhenocrystGeologyJournal of South American Earth Sciences
researchProduct

The effect of microscale pore structure on matrix diffusion—a site-specific study on tonalite

1997

Abstract The matrix diffusion of non-sorbing tracers was studied in rocks from the Syyry area, Central Finland (SY1). The effect of alteration and weathering on rock matrix porosity and on the available pore space, which affects diffusivity, are discussed. The main rock type in the crystalline bedrock of Syyry is a slightly foliated, gray tonalite with mica gneiss inclusions as well as minor, more mafic inclusions. The total porosity and the spatial porosity distribution and microstructure of the rocks were investigated using infiltration of carbon- 14-methylmethacrylate, electron microscopy and Hg-porosimetry. The laboratory-scale diffusion experiments were performed using (1) the out-leac…

010504 meteorology & atmospheric sciencesMetamorphic rock0207 environmental engineeringMineralogy02 engineering and technologyengineering.material01 natural sciencesFick's laws of diffusionSilicateMatrix (geology)chemistry.chemical_compoundchemistryengineeringEnvironmental ChemistryPlagioclase020701 environmental engineeringPorosityBiotite0105 earth and related environmental sciencesWater Science and TechnologyGneissJournal of Contaminant Hydrology
researchProduct

Impact of Coseismic Frictional Melting on Particle Size, Shape Distribution and Chemistry of Experimentally-Generated Pseudotachylite

2020

In natural friction melts, or pseudotachylites, clast textures and glass compositions can influence the frictional behavior of faults hosting pseudotachylites, and are, in turn, sensitive to the processes involved in pseudotachylite formation. Quantification of these parameters in situations where the host rock composition and formation conditions are well-constrained, such as analogue experiments, may yield calibrations that can be employed in analysis of natural pseudotachylites. In this paper, we experimentally-generated pseudotachylites in granitoid rocks (tonalite and Westerly granite) at Pconf= 40 MPa and slip rates of ∼0.1 m s−1, comparable to the conditions under which natural pseud…

010504 meteorology & atmospheric sciencessize and shape distributionfrictional meltingMineralogySlip (materials science)engineering.materialchemistry010502 geochemistry & geophysicsFeldspar01 natural sciencesexperimental pseudotachylitePlagioclaselcsh:ScienceQuartzgranite0105 earth and related environmental sciencestonaliteDecrepitationClastic rockvisual_artengineeringvisual_art.visual_art_mediumGeneral Earth and Planetary Scienceslcsh:QComminutionBiotiteFrontiers in Earth Science
researchProduct

Neoproterozoic Rosetta Gabbro from northernmost Arabian–Nubian Shield, south Jordan : Geochemistry and petrogenesis

2017

An Ediacaran mafic intrusion of south Jordan is a distinctive appinitic igneous rock with a possibly unique texture, characterized by spherical clots up to 40 mm in diameter composed of amphibole cores from which plagioclase euhedra radiate; we call it the Rosetta Gabbro. It is exposed as a small (ca. 750 m(2)) outcrop in the Neoproterozoic basement of south Jordan. A second outcrop of otherwise similar gabbro is located about 400 m to the north of the Rosetta Gabbro, but it lacks the distinctive texture. The Rosetta Gabbro could represent a magma pipe. It intrudes the Aqaba Complex (similar to 600 Ma) granitoids and metasediments of the Janub Metamorphic Complex (633-617 Ma). The gabbro is…

Amphibole microchemistry010504 meteorology & atmospheric sciencesGeochemistryRosetta Gabbroengineering.material010502 geochemistry & geophysicsAppinite01 natural sciencesMagmatic waterGeochemistry and PetrologyPlagioclaseLA-ICP-MSAmphibole0105 earth and related environmental sciencesBasaltGabbroGeovetenskap och miljövetenskapGeologyArabian-Nubian shieldIgneous rockWater-rich magmaMagmaengineeringMaficEarth and Related Environmental SciencesGeology
researchProduct

Experimental alteration of granitic rocks: Implications for the evolution of geothermal brines in the Upper Rhine Graben, Germany

2020

Abstract Geothermal energy exploitation in the Upper Rhine Graben (URG) chiefly has targeted faults and fractures within or connected with the crystalline basement, where hot fluids of c. 200 °C circulate at depths of c. 5 km. Formation fluids of the crystalline basement are highly saline, NaCl-dominated brines, whereas shallow crystalline basement water ( The trace element concentrations of the leachates are hereby related to the composition and stability of minerals in the rocks and can be directly linked to the proposed and observed dissolution processes at the different temperatures. In experiments with pure water at 70 °C, representing the recharge or infiltration conditions, water-roc…

AnalcimeRenewable Energy Sustainability and the EnvironmentChemistry0211 other engineering and technologiesGeochemistryGeology02 engineering and technologyengineering.material010502 geochemistry & geophysicsGeotechnical Engineering and Engineering GeologyFeldspar01 natural sciencesvisual_artIllitevisual_art.visual_art_mediumengineeringKaolinitePlagioclase021108 energyQuartzDissolutionBiotite0105 earth and related environmental sciencesGeothermics
researchProduct