Search results for "Plants"

showing 10 items of 1914 documents

Conifers from the Cenomanian amber of Fouras (Charente-Maritime, western France)

2020

Fossil inclusions of arthropods and microorganisms are abundant in the Cretaceous amber from western France, but plant meso- or macroremains are scarce. Preserved remains are mostly tiny, very fragmented, and indeterminable. Only one amber locality in the Charente department has already provided conifer remains. Here, we report the first plant mesoremains ensnared in Cenomanian amber from Fouras – Bois Vert, in the Charente-Maritime department. They consist of three well-preserved leafy axes and one cone of Cheirolepidiacean conifers. Based on the helical arrangement of rhomboidal, longer than wide, and highly adpressed leaves, leafy axes are ascribed to the genus Pagiophyllum. The ovoid co…

0106 biological sciences010506 paleontologyFloraamber010603 evolutionary biology01 natural sciencesGenusBotanyfossil plants14. Life underwaterLeafy0105 earth and related environmental sciencesbiologypagiophyllumlcsh:QE1-996.5Geology15. Life on landbiology.organism_classificationCretaceousPagiophyllumlcsh:GeologyxerophyticCenomanian[SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/PaleontologyfranceGeologycretaceous
researchProduct

Technology generation to dissemination: lessons learned from the tef improvement project

2018

Indigenous crops also known as orphan crops are key contributors to food security, which is becoming increasingly vulnerable with the current trend of population growth and climate change. They have the major advantage that they fit well into the general socio-economic and ecological context of developing world agriculture. However, most indigenous crops did not benefit from the Green Revolution, which dramatically increased the yield of major crops such as wheat and rice. Here, we describe the Tef Improvement Project, which employs both conventional- and molecular-breeding techniques to improve tef—an orphan crop important to the food security in the Horn of Africa, a region of the world w…

0106 biological sciences0301 basic medicine/dk/atira/pure/subjectarea/asjc/1300/1311TILLING/dk/atira/pure/subjectarea/asjc/1100/1110Context (language use)Plant ScienceBiology580 Plants (Botany)HorticultureEragrostis tef01 natural sciencesFarmer-participatory researchIndigenous03 medical and health sciencesGeneticOrphan cropSettore AGR/07 - Genetica AgrariaEragrostis tef; Marker-assisted breeding; Orphan crops; Tef; TILLING; Farmer-participatory researchMilestone (project management)GeneticsPopulation growthOrphan cropsEnvironmental planningUncategorizedFood security/dk/atira/pure/subjectarea/asjc/1100/1102business.industryTefMarker-assisted breeding030104 developmental biologyAgricultureFamine/dk/atira/pure/subjectarea/asjc/1100/1108businessGreen RevolutionAgronomy and Crop Science010606 plant biology & botany
researchProduct

The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling

2020

AbstractTomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expans…

0106 biological sciences0301 basic medicineAgricultural geneticsCell divisionPlant molecular biologyMolecular biologyTranscriptional regulatory elementsPlant physiologyBiotecnologia agrícolalcsh:MedicineMolecular engineering in plantsPlantesBiology01 natural sciencesArticle03 medical and health sciencesSolanum lycopersicumPlant hormonesDry matterlcsh:ScienceGeneTranscription factorRegulator genePlant ProteinsMultidisciplinaryWater transportlcsh:RGenètica vegetalfood and beveragesGibberellinsUp-Regulation02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sostenibleRepressor ProteinsHorticulturePlant BreedingGENETICA030104 developmental biologyFruitGibberellinlcsh:QPlant biotechnologyFISIOLOGIA VEGETALSink (computing)Plant sciences010606 plant biology & botanyBiotechnologySignal Transduction
researchProduct

Potential risk evaluation for unintended entry of genetically modified plant Propagating material in Europe through import of seeds and animal feed –…

2019

Significant attention has been drawn to the adventitious and technically unavoidable presence of genetically modified (GM) organisms in the food and feed imported into the European Union (EU), while the potential presence of GM seeds in material for cultivation is less studied. Here we report a study from an EU member state, Latvia, during years 2017–2018 regarding monitoring for the presence of GM seeds in certified seed and animal feed material. Eighty-two and 28 samples of seeds intended for cultivation were analyzed in 2017 and 2018, respectively. One soybean sample contained MON40-3-2 soybean seeds (0.09 ± 0.01%) and one maize sample contained MON810 maize seeds (0.08 ± 0.01%). In addi…

0106 biological sciences0301 basic medicineAnimal feedFood Genetically ModifiedFood ContaminationGerminationGenetically modified cropsBiology01 natural sciencesZea mays03 medical and health sciencesmedia_common.cataloged_instanceAnimalsEuropean UnionEuropean unionmedia_commonbusiness.industryPotential riskPlants Genetically ModifiedAnimal FeedLatviaGenetically modified organismBiotechnology030104 developmental biologySeedsSoybeansbusinessAgronomy and Crop Science010606 plant biology & botanyFood ScienceBiotechnologyResearch Paper
researchProduct

Genetic determinants of seed protein plasticity in response to the environment in Medicago truncatula

2021

As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for d…

0106 biological sciences0301 basic medicineCandidate geneGenotypelegumesMutantVitamin UGenome-wide association studyPlant ScienceBiologymethionine recycling01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health scienceschemistry.chemical_compoundMethionineStress PhysiologicalMedicago truncatulaGeneticsStorage protein[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGenome-wide association studies (GWAS)GenePlant Proteins2. Zero hungerchemistry.chemical_classificationGeneticsMethionineSeed Storage Proteinsfood and beveragesGlobulinsCell Biologybiology.organism_classificationMedicago truncatulaMetabolic pathwayPhenotype030104 developmental biologychemistrystorage proteins13. Climate actionplasticityMutationSeedsseedGenome-Wide Association Study010606 plant biology & botany
researchProduct

To move or not to move: roles and specificity of plant RNA mobility

2020

Intercellular communication in plants coordinates cellular functions during growth and development, and in response to environmental cues. RNAs figure prominently among the mobile signaling molecules used. Many hundreds of RNA species move over short and long distances, and can be mutually exchanged in biotic interactions. Understanding the specificity determinants of RNA mobility and the physiological relevance of this phenomenon are areas of active research. Here, we highlight the recent progress in our knowledge of small RNA and messenger RNA movement. Particular emphasis is given to novel insight into the specificity determinants of messenger RNA mobility, the role of small RNA movement…

0106 biological sciences0301 basic medicineCell signalingMessenger RNASmall RNAfungiCellular functionsfood and beveragesRNA transportRNACell CommunicationPlant ScienceComputational biologyPlantsBiology01 natural sciencesRNA Transport03 medical and health sciences030104 developmental biologyRNA PlantRNA MessengerPlant metabolism010606 plant biology & botanyCurrent Opinion in Plant Biology
researchProduct

The problem of misidentification between edible and poisonous wild plants: Reports from the Mediterranean area

2018

Abstract Today, in many European countries, people are looking for wild edible plants to experience new tastes and flavors, by following the new trend of being green and environmentally friendly. Young borage and spinach leaves can be easily confused by inexpert pickers with those of other plants, including poisonous ones, such as Mandragora autumnalis Bertol. (mandrake) or Digitalis purpurea L. (foxglove), common in southern and northern Italy respectively. In the last twenty years, several cases of intoxication by accidental ingestion of mandrake and foxglove have been reported. The purpose of this work was to perform a pharmacognostic characterization of young leaves from borage, mandrak…

0106 biological sciences0301 basic medicineChromatography GasDigitalis GlycosidePhytochemicalsIntoxicationBiologyPhytochemicalToxicology010603 evolutionary biology01 natural sciencesEdible plantGas Chromatography-Mass SpectrometryAccidental ingestion03 medical and health sciencesPlant leaveAlkaloidsAlkaloidHumansDiscriminant analysePoisonous plants Edible plants Plant leaves Accidental ingestion Intoxication Discriminant analysesBorageTraditional medicineMediterranean RegionSettore BIO/02 - Botanica SistematicaDigitalis purpureafood and beveragesMandragora autumnalisDigitalis GlycosidesDiscriminant analysesGeneral MedicineMandrakebiology.organism_classificationPoisonous plantPlant LeavesPlants Toxic030104 developmental biologyPhytochemicalItalyChromatography GaPoisonous plantsSettore BIO/03 - Botanica Ambientale E ApplicataAccidental ingestionEdible plantsEdible plantsMediterranean areaPlants EdibleFood ScienceHuman
researchProduct

Dynamic Precision Phenotyping Reveals Mechanism of Crop Tolerance to Root Herbivory.

2016

The western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) is a major pest of maize (Zea mays) that is well adapted to most crop management strategies. Breeding for tolerance is a promising alternative to combat WCR but is currently constrained by a lack of physiological understanding and phenotyping tools. We developed dynamic precision phenotyping approaches using 11C with positron emission tomography, root autoradiography, and radiometabolite flux analysis to understand maize tolerance to WCR. Our results reveal that WCR attack induces specific patterns of lateral root growth that are associated with a shift in auxin biosynthesis from indole-3-pyruvic acid to indole-3-aceton…

0106 biological sciences0301 basic medicineCrops AgriculturalIndolesPhysiologyGlutamineResearch Articles - Focus IssuePlant Science580 Plants (Botany)01 natural sciencesPlant RootsZea maysHost-Parasite InteractionsCrop03 medical and health sciencesBotanyGeneticsAnimalsCarbon RadioisotopesHerbivoryAmino AcidsPlant DiseasesHerbivorebiologyIndoleacetic AcidsMechanism (biology)Lateral rootfungifood and beveragesBiological Transportbiology.organism_classificationZea maysColeoptera030104 developmental biologyWestern corn rootwormPhenotypeAgronomyPositron-Emission TomographyPEST analysisFlux (metabolism)010606 plant biology & botanyPlant physiology
researchProduct

Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding.

2016

AbstractCrops expressing genes from Bacillus thuringiensis (Bt crops) are among the most successful technologies developed for the control of pests but the evolution of resistance to them remains a challenge. Insect resistant cotton and maize expressing the Bt Vip3Aa protein were recently commercialized, though not yet in Australia. We found that, although relatively high, the frequency of alleles for resistance to Vip3Aa in field populations of H. armigera in Australia did not increase over the past four seasons until 2014/15. Three new isofemale lines were determined to be allelic with previously isolated lines, suggesting that they belong to one common gene and this mechanism is relative…

0106 biological sciences0301 basic medicineCrops AgriculturalInsecticidesHelicoverpa armigeraPlant disease resistanceMothsmedicine.disease_cause01 natural sciencesArticleMicrobiology03 medical and health sciencesBacterial ProteinsBacillus thuringiensisBotanymedicineAnimalsBinding siteGeneAllelesDisease ResistancePlant DiseasesMultidisciplinarybiologyToxinfungiAustraliaMidgutbiology.organism_classificationPlants Genetically Modified010602 entomology030104 developmental biologyCry1AcScientific reports
researchProduct

Ecological plant epigenetics: Evidence from model and non-model species, and the way forward

2017

Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute…

0106 biological sciences0301 basic medicineEPIGENOMIC DIVERSITY[SDV]Life Sciences [q-bio]Species distributionINDIVIDUAL VARIATIONPhenotypic plasticity01 natural sciencesGenomephenotypic plasticityEpigenesis GeneticDNA METHYLATION VARIATIONComputingMilieux_MISCELLANEOUS0303 health sciencesEcologyEcologybioinformatiikkagenomiikkaGenomicsPlantsBioinformatics; ecological epigenetics; genomics; phenotypic plasticity; response to environment; Ecology Evolution Behavior and Systematics[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]HabitatepigenetiikkainternationalPHYSCOMITRELLA-PATENSresponse to environmentPERENNIAL HERBkasviekologiaEcological epigeneticsSEQUENCING DATAEvolutionBioinformaticsEcology (disciplines)GenomicsBiology010603 evolutionary biology[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesPolyploidBehavior and SystematicskasvitEpigeneticsEcosystemEcology Evolution Behavior and Systematics030304 developmental biologyHERB HELLEBORUS-FOETIDUSPhenotypic plasticityBioinformatics ; Ecological Epigenetics ; Genomics ; Phenotypic Plasticity ; Response To EnvironmentAmbientaleResponse to environmentDNA Methylation15. Life on landEcological realismPlant ecology030104 developmental biologyARABIDOPSIS-THALIANABioinformatics ecological epigenetics genomics phenotypic plasticity response to environmentAdaptation[SDE.BE]Environmental Sciences/Biodiversity and EcologyNATURAL-POPULATIONS
researchProduct