Search results for "Plasmopara"

showing 10 items of 28 documents

An ancestral allele of grapevine transcription factor MYB14 promotes plant defence

2016

Highlight The molecular mechanisms underlying the elevated inducibility of stilbene in pathogen-resistant Vitis sylvestris can be explained by the increased inducibility of the MYB14 promoter.

0106 biological sciences0301 basic medicinestilbene synthaseGenotypePhysiologyMYB14Ultraviolet Raysflg22Plant ScienceResveratrol01 natural sciencesModels Biological03 medical and health scienceschemistry.chemical_compoundPlasmopara viticolaOnium CompoundsGenotypePlant ImmunityVitisJasmonateAllelePromoter Regions GeneticTranscription factorAllelesPlant Proteinschemistry.chemical_classificationGeneticsUV.biologyPhytoalexinfungifood and beveragesbiology.organism_classificationgrapevine (V. sylvestris)030104 developmental biologychemistryOomycetesPlasmopara viticolaSalicylic acid010606 plant biology & botanyResearch PaperTranscription FactorsJournal of Experimental Botany
researchProduct

Changes in carbohydrate metabolism in Plasmopara viticola-infected grapevine leaves.

2011

International audience; The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P. viticola infection on leaf starch and-to a larger extent-carbohydrate metabolism. Our results indicate that starch accumulation is associated with an increase in ADP-glucose pyrophosphorylase (AGPase) activit…

0106 biological sciencesChlorophyllPhysiologyStarchenzymatic activityhexosesbeta-AmylaseplantGlucose-1-Phosphate Adenylyltransferasetranscriptomic analyse01 natural sciencesinvertasechemistry.chemical_compoundphytopathogenGene Expression Regulation PlantVitisTrehalaseOligonucleotide Array Sequence Analysis0303 health sciencesbiologyfood and beveragesStarchGeneral MedicineEnzymesBiochemistryOomycetesRNA PlantPlasmopara viticolaCarbohydrate metabolism03 medical and health sciencesPlasmopara viticolaADP-glucose pyrophosphorylasePolysaccharidesVignecarbohydrate metabolism[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologytrehalose030304 developmental biologyPlant Diseasesphotosynthesisbiology.organism_classificationtrehalaseTrehaloseEnzyme assayPlant LeavesInvertasechemistryVitis viniferabiology.proteinDowny mildewfungialpha-AmylasesphysiopathologyAgronomy and Crop Science010606 plant biology & botany
researchProduct

Are grapevine stomata involved in the elicitor-induced protection against downy mildew?

2009

Stomata, natural pores bordered by guard cells, regulate transpiration and gas exchanges between plant leaves and the atmosphere. These natural openings also constitute a way of penetration for microorganisms. In plants, the perception of potentially pathogenic microorganisms or elicitors of defense reactions induces a cascade of events, including H2O2 production, that allows the activation of defense genes, leading to defense reactions. Similar signaling events occur in guard cells in response to the perception of abscisic acid (ABA), leading to stomatal closure. Moreover, few elicitors were reported to induce stomatal closure in Arabidopsis and Vicia faba leaves. Because responses to ABA…

0106 biological sciencesLightPhysiologychampignon phytopathogènestomate01 natural sciencesréaction de défense03 medical and health sciencesPathosystemchemistry.chemical_compoundvitis viniferaArabidopsisGuard cellBotanyVitis[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRELATION PLANTE-MICROORGANISMERELATION PLANTE-MICROORGANISME;RELATION HOTE-PARASITEAbscisic acid030304 developmental biologyTranspirationRELATION HOTE-PARASITE0303 health sciencesbiologyéliciteurfungifood and beveragesGeneral MedicineHydrogen Peroxidebiology.organism_classificationImmunity InnateElicitorPlant LeaveschemistryOomycetesmildiouPlasmopara viticolaPlant StomataDowny mildewvigneReactive Oxygen SpeciesAgronomy and Crop Science010606 plant biology & botanyAbscisic Acid
researchProduct

Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: application to the evaluation of re…

2013

article i nfo The grapevine downy mildew (Plasmopara viticola) provokes severe damages and destroys the harvest in the absence of an effective protection. Numerous fungicide treatments are thus generally necessary. To promote a sustainable production, alternative strategies of protection including new antifungal molecules, resistant geno- types or elicitor-induced resistance are under trial. To evaluate the relevance of these strategies, resistance tests are required. In this context, three image analysis methods were developed to read the results of tests performed to assessP.viticolasporulation and mycelial development, and H 2 O 2 production in leaves. They have been validated using elic…

0106 biological sciencesMicrobiology (medical)Antifungalmedicine.drug_class[SDV]Life Sciences [q-bio]H2O2Context (language use)01 natural sciencesMicrobiologyImage analysis03 medical and health sciencesPlasmopara viticolamedicinePlant defense against herbivoryImage Processing Computer-Assisted[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyVitisimage analysis;Plasmopara viticola;downy mildew;grapevine;H2O2;resistance testsMolecular Biology[ SDV.MP.MYC ] Life Sciences [q-bio]/Microbiology and Parasitology/MycologyAnalysis method[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology030304 developmental biologyDisease ResistancePlant Diseases2. Zero hunger0303 health sciencesResistance (ecology)biologyResistance testsReproducibility of Resultsfood and beveragesHydrogen Peroxidebiology.organism_classificationFungicidePlant LeavesHorticultureAgronomyOomycetesPlasmopara viticola[SDE]Environmental SciencesDowny mildewGrapevine010606 plant biology & botanyDowny mildew
researchProduct

Stomatal deregulation in Plasmopara viticola-infected grapevine leaves.

2007

International audience; In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P. viticola wilted more rapidly than healthy ones when submitted to water starvation. • Here, complementary approaches measuring stomatal conductance and infrared thermographic and microscopic observations were used to investigate stomatal opening/closure in response to infection. • In infected leaves, stomata remained open in darkness and during water stress, leading to increased transpir…

0106 biological sciencesStomatal conductancePLASMOPARA VITICOLAPhysiologySTOMATAL CONDUCTANCEPlant ScienceBiology01 natural sciencesPlant Epidermis03 medical and health scienceschemistry.chemical_compoundABSCISIC ACID (ABA)Guard cellBotanyVitisDOWNY MILDEWAbscisic acid030304 developmental biologyTranspirationOomycete0303 health sciencesfungifood and beveragesWaterbiology.organism_classification[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacySporePlant LeaveschemistryOomycetesGRAPEVINE (VITIS VINIFERA)Plasmopara viticolaGUARD CELLSDowny mildew010606 plant biology & botanyAbscisic AcidThe New phytologistReferences
researchProduct

Influence of leaf age on induced resistance in grapevine against Plasmopara viticola

2012

International audience; Sulfated laminarin (PS3) has previously been shown to induce resistance of grapevine leaves against the oomycete Plasmopara viticola, the causal agent of grape downy mildew. Here, we observed that the level of PS3-induced resistance (PS3-IR) was higher in the adult leaf (in position P3) than in the younger, not fully expanded leaf (in position P1, located above P3). By investigating grapevine defense reactions upon PS3 treatment and inoculation, we found that the production of H2O2, of phytoalexins, and the deposition of phenolics were more abundant in P3 than in P1 leaves. In addition, PS3 significantly reduced stomatal colonization by zoospores only in P3 leaves. T…

0106 biological sciencesZoospore[SDV]Life Sciences [q-bio]Plant ScienceAge-related resistance01 natural sciencesinduced resistance03 medical and health sciencesLaminarinchemistry.chemical_compoundvitis viniferaBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyColonizationpriming030304 developmental biologyOomycete0303 health sciencesage-related resistancebiologyInoculationfood and beveragesbiology.organism_classificationchemistryPlasmopara viticola[SDE]Environmental SciencesDowny mildewplant developmentplasmopara viticola010606 plant biology & botany
researchProduct

The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine’s Induced Resistance agains…

2014

Grapevine (Vitis vinifera) is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The b-glucan laminarin (Lam) and its sulfated derivative (PS3) have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola). However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR)-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this st…

0106 biological sciences[SDV]Life Sciences [q-bio]lcsh:Medicinelaminarine sulfatéePlant disease resistance01 natural sciencesMicrobiologyTranscriptomePlasmopara viticola03 medical and health sciencesLaminarinchemistry.chemical_compoundvitis viniferaBotanytranscriptome du stressdéfenses SA- et ROS- dépendants[SDV.BV]Life Sciences [q-bio]/Vegetal Biologylaminarine sulfatée;transcriptome du stress;amorçage;défenses SA- et ROS- dépendants;résistance;grapevine ;Plasmopara viticolarésistancelcsh:Science030304 developmental biology2. Zero hungerchemistry.chemical_classification0303 health sciencesReactive oxygen speciesMultidisciplinarybiologyPhytoalexinlcsh:Rbiology.organism_classificationvitis vinifera; microarraygrapevineRespiratory burstElicitorchemistryamorçagePlasmopara viticola[SDE]Environmental Scienceslcsh:Qmicroarray010606 plant biology & botany
researchProduct

Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola

2014

International audience; Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy) and casein (cas) to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to th…

0106 biological sciencesphytoalexins[SDV]Life Sciences [q-bio]Plant ScienceresveratrolResveratrol01 natural sciencesimmune responseinduced resistanceTranscriptomechemistry.chemical_compoundimmunité induiteSoybean hydrolysateOriginal Research ArticlePathogen2. Zero hungerchemistry.chemical_classification0303 health sciencesbiologyPhytoalexinfood and beveragesCasein hydrolysatePlasmopara viticola[SDE]Environmental Sciencesplant immunityrésistance induitelcsh:Plant cultureSoybean hydrolysate; Casein hydrolysate; immune response; grapevine; Plasmopara viticolaHydrolysateMicrobiologyéliciteur de résistance03 medical and health sciencesPlasmopara viticolaImmunityprotein hydrolysatesBotanymildiou de la vigne[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyhydrolysat de protéineprotéine prlcsh:SB1-1110030304 developmental biologyprotein hydrolysates;Plasmopara viticola;Vitis vinifera;induced resistance;plant immunity;phytoalexinsextrait de sojagène de défensehydrolysat de caséinebiology.organism_classificationgrapevinechemistryVitis viniferaDowny mildew010606 plant biology & botany
researchProduct

2017

Induction of plant resistance against pathogens by defense elicitors constitutes an attractive strategy to reduce the use of fungicides in crop protection. However, all elicitors do not systematically confer protection against pathogens. Elicitor-induced resistance (IR) thus merits to be further characterized in order to understand what makes an elicitor efficient. In this study, the oligosaccharidic defense elicitors H13 and PS3, respectively, ineffective and effective to trigger resistance of grapevine leaves against downy mildew, were used to compare their effect on the global leaf metabolism. Ultra high resolution mass spectrometry (FT-ICR-MS) analysis allowed us to obtain and compare t…

2. Zero hunger0106 biological sciences0301 basic medicinebiologyfood and beveragesPlant ScienceErythritolbiology.organism_classificationUltra high resolution01 natural sciencesElicitorFungicide03 medical and health sciencesMetabolic pathwaychemistry.chemical_compound030104 developmental biologyMetabolomicsBiochemistrychemistryPlasmopara viticolaBotanyDowny mildew010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Apprentissage automatique de réseaux d'interaction à partir de données de séquences de nouvelle génération

2022

Climate change and other human-induced processes are modifying ecosystems, globally, at an ever increasing rate. Microbial communities play an important role in the functioning ecosystems, maintaining their diversity and services. These communities are shaped by the different abiotic environmental effects to which they are subjected and the biotic interactions between all community members. The ANR Next-Generation Biomonitoring (NGB) project proposed to reconstruct interaction networks from abundance measures obtained sequencing environmental DNA (eDNA) and to use these networks to monitor ecosystem change. In this thesis, conducted as part of the NGB project, I evaluate the potential of tw…

Abductive/Inductive Logic Programming (A/ILP)apprentissage automatique explicableInteraction networksbiological controlséquençage de nouvelle générationmicrobial ecologygrapevine[SDE.BE] Environmental Sciences/Biodiversity and Ecology[SDV] Life Sciences [q-bio]Plasmopara viticolamicrobiomesréseaux d'InteractionNext-Generation sequencingbiomonitoringexplainable machine learning
researchProduct