Search results for "Point contact"

showing 6 items of 16 documents

Differences between photoluminescence spectra of type-I and type-II quantum dots

2008

Semiconductor quantum dots which trap simultaneously electrons and holes are called quantum dots of type-I. Contrary to these structures, empty dots of type-II attract only one type of charged carriers and repel the other. Particularities of confining potential are unaccessible by any direct measurements, thus recognition of quantum dot type by indirect method is highly desired. Our proposal is to distinguish between the two types of quantum dots via a comparison of photoluminescence spectra of these structures, which differ in both cases qualitatively.

PhysicsHistoryPhotoluminescenceCondensed matter physicsQuantum point contactElectronFermionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectComputer Science ApplicationsEducationQuantum dot laserQuantum dotCharge carrierEmission spectrumJournal of Physics: Conference Series
researchProduct

Detector's quantum backaction effects on a mesoscopic conductor and fluctuation-dissipation relation

2016

When measuring quantum mechanical properties of charge transport in mesoscopic conductors, backaction effects occur. We consider a measurement setup with an elementary quantum circuit, composed of an inductance and a capacitor, as detector of the current flowing in a nearby quantum point contact. A quantum Langevin equation for the detector variable including backaction effects is derived. Differences with the quantum Langevin equation obtained in linear response are pointed out. In this last case, a relation between fluctuations and dissipation is obtained, provided that an effective temperature of the quantum point contact is defined.

PhysicsMesoscopic physicsQuantum point contactGeneral Physics and AstronomyCharge (physics)Dissipation01 natural sciences010305 fluids & plasmasLangevin equationQuantum circuitQuantum mechanics0103 physical sciences010306 general physicsQuantum dissipationQuantumFortschritte der Physik
researchProduct

Unavoidable decoherence in semiconductor quantum dots

2005

Phonon-induced unavoidable decoherence of orbital degrees of freedom in quantum dots is studied and the relevant time scales are estimated. Dephasing of excitons due to acoustic phonons and, in a polar medium, to optical phonons, including anharmonic effects and enhancement of the effective Fr\"ohlich constant due to localization, is assessed for typical self-assembled quantum dots. Temporal inefficiency of Pauli blocking due to lattice inertia is predicted. For quantum dots placed in a diluted magnetic semiconductor medium a magnon-induced dephasing of a spin is also estimated in accordance with experimental results.

PhysicsQuantum decoherenceCondensed matter physicsDephasingQuantum point contactCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencesymbols.namesakePauli exclusion principleQuantum dot laserQuantum dotQuantum mechanicsPrincipal quantum numbersymbolsCondensed Matter::Strongly Correlated ElectronsQuantum dissipationPhysical Review B
researchProduct

Single scatterings in single artificial atoms: Quantum coherence and entanglement

2003

We employ the quantum-jump approach to study single scatterings in single semiconductor quantum dots. Two prototypical situations are investigated. First, we analyze two-photon emissions from the cascade biexciton decay of a dot where the single-exciton states exhibit a fine-structure splitting. We show that this splitting results for appropriately chosen polarization filters in an oscillatory behavior of two-photon correlations, and carefully examine the proper theoretical description of the underlying scattering processes. Secondly, we analyze the decay of a single-electron charged exciton in a quantum dot embedded in a field effect structure. We show how the quantum properties of the cha…

PhysicsQuantum discordCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsQuantum point contactCavity quantum electrodynamicsFOS: Physical sciencesQuantum entanglementCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciences010305 fluids & plasmasOpen quantum systemQuantum dot laserQuantum dotQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsBiexcitonPhysical Review B
researchProduct

Electronic and magnetic structure of artificial atoms

1999

The concept of shell structure has been found useful in the description of semiconductor quantum dots, which today can be made so small that they contain less than 20 electrons. We review the experimental discovery of magic numbers and spin alignment following Hund’s rules in the addition spectra of vertical quantum dots, and show that these results compare well to model calculations within spin density functional theory. We further discuss the occurrence of spin density waves in quantum dots and quantum wires. For deformable two-dimensional quantum dots (for example, jellium clusters on surfaces), we study the interplay between Hund’s rules and Jahn–Teller deformations and investigate the …

PhysicsQuantum spin Hall effectCondensed matter physicsQuantum dotPrincipal quantum numberQuantum point contactCondensed Matter::Strongly Correlated ElectronsSpin engineeringCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum numberMagnetic quantum numberSpin quantum numberAtomic and Molecular Physics and OpticsThe European Physical Journal D
researchProduct

Far-infrared laser on quantum dots created by electric-field focusing

2003

The new proposal of a far-infrared laser employing intraband transitions in the system of quantum dots is briefly described. The conditions for inversion of population for electrons in the quantum dot matrix created by an electric-field focusing in narrow GaAs/AlGaAs quantum well are discussed. The laser is planned to be pumped by periodically repeated rapid creation and destruction of the quantum dot matrix allowing for repeated filling of the dot levels with electrons from a quantum well. Some major results of the analysis of the kinetics of the electron-photon system are presented.

Quantum opticsbusiness.industryChemistryQuantum point contactCavity quantum electrodynamicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsQuantum dotQuantum dot laserElectro-absorption modulatorOptoelectronicsElectrical and Electronic EngineeringQuantum-optical spectroscopybusinessQuantum wellMicroelectronic Engineering
researchProduct