Search results for "Poly(lactide)"
showing 10 items of 25 documents
Comparative Investigation on the Soil Burial Degradation Behaviour of Polymer Films for Agriculture before and after Photo-Oxidation
2020
Polymer films based on biodegradable polymers, polyethylene (PE) and modified PE with oxo-degradable additive were prepared by film blowing. Carbon black (1%) was added to all the films. Commercial biodegradable Ecovio®
Thermal kinetics for the energy valorisation of polylactide/sisal biocomposites
2018
[EN] The thermal stability and decomposition kinetics of PLA/sisal biocomposites was discussed to evaluate the suitability of their use in energy recovery processes such as pyrolysis and combustion. The influence of the addition of sisal up to 30%wt, the presence of coupling agent, and the atmosphere of operation, i.e. inert or oxidative was discussed by means of multi-rate linear non-isothermal thermogravimetric experiments. All biocomposites showed a mean high heating value of 15 MJ/kg indicating their suitability for energy recovery processes. The thermal requirements of PLA/sisal decomposition were assessed in terms of onset decomposition temperature and apparent activation energy. A mi…
Thermal analysis applied to the characterization of degradation in soil of polylactide: II. On the thermal stability and thermal decompositon kinetics
2010
[EN] The disposal stage of polylactide (PLA) was assessed by burying it in active soil following an international standard. Degradation in soil promotes physical and chemical changes in the polylactide properties. The characterization of the extent of degradation underwent by PLA was carried out by using Thermal Analysis techniques. In this paper, studies on the thermal stability and the thermal decomposition kinetics were performed in order to assess the degradation process of a commercial PLA submitted to an accelerated soil burial test by means of multi-linear-non-isothermal thermogravimetric analyses. Results have been correlated to changes in molecular weight, showing the same evolutio…
Hygrothermal ageing of reprocessed polylactide
2012
[EN] The influence of an accelerated hygrothermal ageing simulation test on a commercial PLA and its three subsequent mechanically-reprocessed materials was studied. The analysis was focused on the water diffusion kinetics and the physico-chemical changes induced by the hygrothermal degradation. Water diffusion proceeded faster than chain relaxation processes, as defined by a Case II absorption model. It was proved that the water diffusion rate decreased with subsequent reprocessing cycles and increased with higher hygrothermal ageing temperatures. Hydrolytic chain scission provoked significant molar mass decays and consequent general losses of thermal and mechanical performance. The rearra…
Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques
2016
[EN] The upcoming introduction of polylactides in the fractions of polymer waste encourages technologists to ascertain its valorization at the best quality conditions. Mechanical recycling of PLA represents one of the most cost-effective methodologies, but the recycled materials are usually directed to downgraded applications, due to the inherent thermomechanical degradation affecting its mechanical, thermal and rheological performance. In this review, the current state of mechanical recycling of PLA is reported, with special emphasis on a multi-scale comparison among different studies. Additionally, the applications of physical and chemical upgrading strategies, as well as the chances to b…
P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: Polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellula…
2012
In order to explore the influence of polymer microstructure and stereochemistry in biological settings, the synthesis, micellization, cellular fate and the use in paclitaxel formulations of poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(L-lactide) (P(HPMA)-block-P(LLA)) and poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(DL-lactide) block copolymers (P(HPMA)-block-P(DLLA)) were studied. To this end, P(HPMA)-block-P(lactide) block copolymers and their fluorescently labeled analogues were synthesized. The polymers exhibited molecular weights M-n around 20,000 g/mol with dispersities (D=M-w/M-n) below 1.3. In addition, the solution conformation of this new type of partially degradable…
Suitability of blends from virgin and reprocessed polylactide: performance and energy valorization kinetics
2018
[EN] A blending strategy of virgin and reprocessed polylactide may be postulated as an alternative to reduce the material cost at industrial level, and as a valorisation route to plastic waste management of production scraps. The performance of blends prepared from virgin polylactide and polylactide mechanically reprocessed up to two cycles (PLA-V/R) was assessed in terms of thermo-oxidative stability, morphology, viscoelasticity and thermal kinetics for energetic valorisation. PLA-V/R blends showed appropriate thermo-oxidative stability. The amorphous nature of polylactide was preserved after blending. The viscoelastic properties showed an increment of the mechanical blend effectiveness, w…
A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model
2020
The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3 mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them wi…
GALACTOSE-DECORATED POLYMERIC CARRIERS FOR HEPATOCYTE-SELECTIVE DRUG TARGETING
2015
In this paper, the current available strategies to realize galactose-decorated nanostructured polymeric systems are summarized. These carriers are designed in order to obtain targeted drug delivery to hepatocytes via galactose (GAL) moieties, i.e., for the treatment of viral hepatitis or liver cancer that are the greater causes of global disability and mortality. Usually, the main followed strategy to obtain galactosylated polymeric carriers is to use galactosylated copolymers. The chemical modifications of preformed polymers with sugar-containing reagents is followed for obtaining lactosaminated human albumin, galactosylated phospholipid-polyaminoacid and polylactide (PLA)- polyaminoacid c…
Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copoly…
2010
We describe a synthetic pathway to functional P(HPMA)-b-P(LLA) block copolymers. The synthesis relies on a combination of ring-opening polymerization of L-lactide, conversion into a chain transfer agent (CTA) for the RAFT polymerization of pentafluorophenyl methacrylate. A series of block copolymers was prepared that exhibited molecular weights $\overline M _{\rm n}$ ranging from 7 600 to 34 300 g · mol(-1) , with moderate PDI between 1.3 and 1.45. These reactive precursor polymers have been transformed into biocompatible P(HPMA)-b-P(LLA) copolymers and their fluorescently labeled derivatives by facile replacement of the pentafluorophenyl groups. The fluorescence label attached to this new …