Search results for "Polyesters"
showing 10 items of 117 documents
Antibacterial suture vs silk for the surgical removal of impacted lower third molars. A randomized clinical study.
2015
Background The aim of this study was to evaluate the clinical and microbiological impact of an antibacterial suture (Monocryl® Plus) in the surgical removal of I3M. Material and Methods A “split-mouth”, prospective pilot clinical study was designed involving 20 patients programmed for the surgical removal of I3M. Each side was randomly sutured with Monocryl® Plus or silk suture and removed for microbiological study 72 hours and 7 days after surgery. Presence of SSI, wound bleeding and the degree of discomfort associated with each type of suture material (scored by means of a visual analog scale) were evaluated. The level of contamination of each material was observed under the scanning elec…
1-n-Butyl-3-methylimidazolium-2-carboxylate: a versatile precatalyst for the ring-opening polymerization of ε-caprolactone and rac-lactide under solv…
2013
The ring-opening polymerization of ε-caprolactone (ε-CL) and rac-lactide (rac-LA) under solvent-free conditions and using 1-n-butyl-3-methylimidazolium-2-carboxylate (BMIM-2-CO2) as precatalyst is described. Linear and star-branched polyesters were synthesized by successive use of benzyl alcohol, ethylene glycol, glycerol and pentaerythritol as initiator alcohols, and the products were fully characterized by 1H and 13C{1H} NMR spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). BMIM-2-CO2 acts as an N-heterocyclic carbene precursor, resulting from in situ decarboxylation, either by heating under vacuo (method A) or by addition of NaBPh4 (method B)…
Galactosylated polymeric carriers for liver targeting of sorafenib
2014
In this paper, we describe the preparation of liver-targeted polymeric micelles potentially able to carry sorafenib to hepatocytes for treatment of hepatocarcinoma (HCC), exploiting the presence of carbohydrate receptors, ASGPR. These micelles were prepared starting from a galactosylated polylactide-polyaminoacid conjugate. This latter was obtained by chemical reaction of α,β-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-d,l-aspartamide (PHEA-EDA) with polylactic acid (PLA), and subsequent reaction with lactose, leading to PHEA-EDA-PLA-GAL copolymer. Liver-targeted sorafenib-loaded micelles were obtained in aqueous media at low PHEA-EDA-PLA-GAL copolymer concentration value with nanometer …
P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: Polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellula…
2012
In order to explore the influence of polymer microstructure and stereochemistry in biological settings, the synthesis, micellization, cellular fate and the use in paclitaxel formulations of poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(L-lactide) (P(HPMA)-block-P(LLA)) and poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(DL-lactide) block copolymers (P(HPMA)-block-P(DLLA)) were studied. To this end, P(HPMA)-block-P(lactide) block copolymers and their fluorescently labeled analogues were synthesized. The polymers exhibited molecular weights M-n around 20,000 g/mol with dispersities (D=M-w/M-n) below 1.3. In addition, the solution conformation of this new type of partially degradable…
Adhesion prophylaxis using a copolymer with rationally designed material properties.
2008
Physical barriers are the only licensed adjuncts for adhesion prophylaxis in the United States and Europe. Here, we investigate D,L-polylactide-epsilon-caprolactonetrimethylenecarbonate (PCT copolymer), which is a rationally designed biomaterial, as an adhesion barrier.PCT copolymer membranes were produced by polymerization of the monomers, dissolution in organic solvents, and subsequently processing them by means of modified phase inversion and freeze drying. In vitro cytotoxicity was assayed by fibroblast culture. In vivo adhesion prophylaxis was studied in a rat model that involved standardized traumatization by electrocautery and suturing. The quantity and quality of the resulting adhes…
Margination of Fluorescent Polylactic Acid-Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure.
2017
The last decade has seen the emergence of vascular-targeted drug delivery systems as a promising approach for the treatment of many diseases, such as cardiovascular diseases and cancer. In this field, one of the major challenges is carrier margination propensity (i.e., particle migration from blood flow to vessel walls); indeed, binding of these particles to targeted cells and tissues is only possible if there is direct carrier–wall interaction. Here, a microfluidic system mimicking the hydrodynamic conditions of human microcirculation in vitro is used to investigate the effect of red blood cells (RBCs) on a carrier margination in relation to RBC concentration (hematocrit) and pressure drop…
Nanosized shape-changing colloids from liquid crystalline elastomers.
2010
A method to prepare shape-changing nanospheres from liquid crystalline elastomers is reported. The nanosized colloids are prepared by a miniemulsion process. During this process, colloids are prepared from a liquid crystalline (LC) main-chain polyester and subsequently crosslinked into a nanometer-sized LC elastomer. The ability of these LC elastomers to change their shape at the phase transition temperature from the smectic A to the isotropic phase was detected by temperature-dependent transmission electron microscopy. The phase transition-induced shape change leads to strongly shape anisotropic nanosized elastomer particles.
Establishment of a pulmonary epithelial barrier on biodegradable poly-L-lactic-acid membranes
2019
Development of biocompatible and functional scaffolds for tissue engineering is a major challenge, especially for development of polarised epithelia that are critical structures in tissue homeostasis. Different in vitro models of the lung epithelial barrier have been characterized using non-degradable polyethylene terephthalate membranes which limits their uses for tissue engineering. Although poly-L-lactic acid (PLLA) membranes are biodegradable, those prepared via conventional Diffusion Induced Phase Separation (DIPS) lack open-porous geometry and show limited permeability compromising their use for epithelial barrier studies. Here we used PLLA membranes prepared via a modification of the…
Nanoencapsulation in Lipid-Core Nanocapsules Controls Mometasone Furoate Skin Permeability Rate and Its Penetration to the Deeper Skin Layers
2013
<b><i>Aims:</i></b> The influence of nanoencapsulation of mometasone furoate (MF) in poly(ε-caprolactone) lipid-core nanocapsules (LNC) on its in vitro human skin permeation and penetration was evaluated. <b><i>Methods:</i></b> Semisolid formulations were prepared by increasing the viscosity of LNC using a carbomer (Carbopol® Ultrez at 0.5% w/v). Two complementary techniques (the static Franz diffusion cell model and the Saarbrücken penetration model) were used to evaluate skin permeation/penetration. <b><i>Results:</i></b> The drug release rate was decreased by nanoencapsulation. The skin permeability of MF was control…
Biodegradable tablets having a matrix of low molecular weight poly-L-lactic acid and poly-D,L-lactic acid.
1990
Biodegradable Homo- and Copolymers of lactic and glycolic acids have been used for manufacture of microparticles and matrix implants1,5). To ensure sufficient hydrolytic matrix stability lactic acids of high and medium degree of polymerization have been used. The manufacture of poly lactic acid tablets with an average molecular weight of 25000 and 6000 was reported recently, after finishing the following study2). Bioabbaubare Gerusttabletten aus niedermolekularer poly-L-Milchsaure und poly-D,L-Milchsaure