Search results for "Polyesters"

showing 10 items of 117 documents

Poly(lactic acid)/carvacrol-based materials: preparation, physicochemical properties, and antimicrobial activity

2020

The current demand for new antimicrobial systems has stimulated research for the development of poly(lactic acid)/carvacrol (PLA/CAR)-based materials able to hinder the growth and spread of microorganisms. The eco-friendly characteristics of PLA and cytocompatibility make it very promising in the perspective of green chemistry applications as material for food and biomedical employments. The broad-spectrum biological and pharmacological properties of CAR, including antimicrobial activity, make it an interesting bioactive molecule that can be easily compounded with PLA by adopting the same techniques as those commonly used for PLA manufacturing. This review critically discusses the most comm…

PolymersPolyestersNanotechnologyAntimicrobial activityApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compoundstomatognathic systemCarvacrolAntimicrobial activity; Carvacrol; Drug delivery; Food and biomedical application; PLACarvacrolHigh potential030304 developmental biology0303 health sciencesMaterials preparation030306 microbiologyFood PackagingFood and biomedical applicationGeneral MedicineAntimicrobialAnti-Bacterial AgentsLactic acidFood packagingchemistryDrug deliveryDrug deliveryPLACymenesBiotechnologyApplied Microbiology and Biotechnology
researchProduct

Aortic valve-sparing root replacement from inside the aorta using three Dacron skirts preserving the native Valsalva sinuses geometry and stabilizing…

2009

We present an alternative idea for valve-sparing technique combining the advantages of the reimplantation and the benefits of the remodeling techniques. We replace the sinuses of Valsalva using three Dacron skirts from inside of the aorta. The physiological anatomy of the Valsalva sinuses and their dynamic properties are preserved and the aortic commissures displacement avoided. The distal rim of each Dacron skirt was anchored to the aorto-ventricular junction using Ticron (2-0) U stitches placed from the ventricular side to the aortic side. We stabilize the base of the aortic annulus to prevent future dilation.

Pulmonary and Respiratory MedicineAortic valveAortic root aneurysm; Valve-sparing surgery; Easy procedurePolyestersAortic root aneurysmAortic DiseasesProsthesis DesignBlood Vessel Prosthesis ImplantationEasy proceduremedicine.arteryMedicineHumanscardiovascular diseasesCardiac skeletonSurgical ReplantationAortaCardiopulmonary BypassSuturesbusiness.industryPolyethylene TerephthalatesSettore MED/23 - Chirurgia CardiacaAnatomySinus of ValsalvaAortic AneurysmBlood Vessel ProsthesisValve-sparing surgeryParanasal sinusesmedicine.anatomical_structureTreatment OutcomeAortic Valvecardiovascular systemSurgeryCardiology and Cardiovascular MedicinebusinessTomography X-Ray Computedcirculatory and respiratory physiologyDilatation PathologicInteractive cardiovascular and thoracic surgery
researchProduct

Evaluation of silver-infused polylactide films for inactivation of Salmonella and feline calicivirus in vitro and on fresh-cut vegetables

2012

There is a growing trend to develop packaging materials with an active role in guarantying that the quality and safety characteristics of packaged products will remain or improve from preparation throughout shelf-life. In the present study, 0.001-1.0 wt.% silver ions were satisfactorily incorporated into polylactide (PLA) films by a solvent casting technique. Silver migration from the films was measured by voltamperometry and then correlated with its antimicrobial efficacy against Salmonella enterica and feline calicivirus (FCV), a human norovirus surrogate, by using the Japanese industrial standard (JIS Z 2801). The PLA-silver films showed strong antibacterial and antiviral activity in vit…

SalmonellaSilverPolyestersActive packagingmedicine.disease_causeMicrobiologyMicrobiologyAnti-Infective AgentsSalmonellaVegetablesProduct PackagingmedicineCaliciviridae InfectionsInfectivityFeline calicivirusbiologyChemistryTemperatureCalicivirusSilver CompoundsGeneral MedicineLettucebiology.organism_classificationAntimicrobialSalmonella entericaVirus InactivationAntibacterial activityCalicivirus FelineFood ScienceInternational Journal of Food Microbiology
researchProduct

Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the os…

2014

Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix-embedded cells. In the present study, we present a strategy to encase a bioprinted, cell-containing, and soft scaffold with an electrospun mat. The electrospun poly(e-caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicate…

ScaffoldBiocompatibilityPolyestersNanofibersOsteoclastsNanotechnologyBiocompatible MaterialsApplied Microbiology and BiotechnologyMineralization (biology)chemistry.chemical_compoundCalcification PhysiologicOsteoclastCell Line TumormedicineHumansNanotechnologySaos-2 cellsCell ProliferationTissue ScaffoldsChemistrytechnology industry and agricultureGeneral MedicineSilicon DioxideElectrospinning3. Good healthTetraethyl orthosilicatemedicine.anatomical_structureChemical engineeringNanofiberMolecular MedicineBiotechnologyBiotechnology journal
researchProduct

From single fiber to macro-level mechanics: A structural finite-element model for elastomeric fibrous biomaterials

2014

In the present work, we demonstrate that the mesoscopic in-plane mechanical behavior of membrane elastomeric scaffolds can be simulated by replication of actual quantified fibrous geometries. Elastomeric electrospun polyurethane (ES-PEUU) scaffolds, with and without particulate inclusions, were utilized. Simulations were developed from experimentally-derived fiber network geometries, based on a range of scaffold isotropic and anisotropic behaviors. These were chosen to evaluate the effects on macro-mechanics based on measurable geometric parameters such as fiber intersections, connectivity, orientation, and diameter. Simulations were conducted with only the fiber material model parameters a…

ScaffoldFabricationMaterials scienceFinite elements methodPolymersPolyestersmicrostructureFinite Element AnalysisPolyurethanesBiomedical EngineeringBiocompatible MaterialsMicroscopy Atomic ForceElastomercaffoldArticleBiomaterialsMaterials TestingElasticity (economics)Composite materialAnisotropyMesoscopic physicsTissue EngineeringTissue Scaffoldstissue engineering.Polyethylene TerephthalatesIsotropyMechanicsElasticityFinite element methodMechanics of MaterialselectrospunAnisotropyStress MechanicalJournal of the Mechanical Behavior of Biomedical Materials
researchProduct

Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary in Vivo Evaluation

2017

Abstract Background There is increasing interest in the development of vessel substitutes, and many studies are currently focusing on the development of biodegradable scaffolds capable of fostering vascular regeneration. We tested a new biocompatible and biodegradable material with mechanical properties similar to those of blood vessels. Methods The material used comprises a mixture of α,β-poly(N-2-hydroxyethyl)- d,l -aspartamide (PHEA) and polylactic acid (PLA), combined with polycaprolactone (PCL) by means of electrospinning technique. Low-molecular-weight heparin was also linked to the copolymer. A tubular PHEA-PLA/PCL sample was used to create an arteriovenous fistula in a pig model wit…

ScaffoldMaterials scienceBiocompatibilityPolymersSwinePolyesters0206 medical engineering02 engineering and technologySettore MED/22 - Chirurgia VascolareNeovascularizationchemistry.chemical_compoundPolylactic acidBlood vessel prosthesismedicineAnimalsTransplantationRegeneration (biology)Bioabsorbable scaffold Bioengineered vascular scaffold Experimental surgery021001 nanoscience & nanotechnology020601 biomedical engineeringBlood Vessel ProsthesisSettore MED/18 - Chirurgia GeneraleCoagulative necrosischemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPolycaprolactoneSurgerymedicine.symptomPeptides0210 nano-technologyBiomedical engineeringTransplantation Proceedings
researchProduct

Covalent RGD modification of the inner pore surface of polycaprolactone scaffolds

2011

Scaffold production for tissue engineering was demonstrated by means of a hot compression molding technique and subsequent particulate leaching. The utilization of spherical salt particles as the pore-forming agent ensured complete interconnectivity of the porous structure. This method obviated the use of potentially toxic organic solvents. To overcome the inherent non-cell-adhesive properties of the hydrophobic polymer polycaprolactone (PCL) surface activation with a diamine was performed, followed by the covalent immobilization of the adhesion-promoting RGD-peptide. The wet-chemical approach was performed to guarantee modification throughout the entire scaffold structure. The treatment wa…

ScaffoldMaterials scienceHot TemperaturePolyestersBiomedical EngineeringBiophysicsCompression moldingBioengineeringInterconnectivityOsteocytes/dk/atira/pure/sustainabledevelopmentgoals/clean_water_and_sanitationBiomaterialschemistry.chemical_compoundTissue engineeringAcetyltransferasesBiomimetic MaterialsMaterials TestingCell AdhesionHumansComposite materialCell Proliferationchemistry.chemical_classificationMolecular StructureTissue EngineeringTissue ScaffoldsEndothelial CellsWaterPolymerFibroblastschemistryCovalent bondPolycaprolactoneSurface modificationSaltsSDG 6 - Clean Water and SanitationHydrophobic and Hydrophilic InteractionsPorosity
researchProduct

Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering

2012

Biodegradable thermoplastic elastomers are attractive for application in cardiovascular tissue construct development due to their amenability to a wide range of physical property tuning. For heart valve leaflets, while low flexural stiffness is a key design feature, control of this parameter has been largely neglected in the scaffold literature where electrospinning is being utilized. This study evaluated the effect of processing variables and secondary fiber populations on the microstructure, tensile and bending mechanics of electrospun biodegradable polyurethane scaffolds for heart valve tissue engineering. Scaffolds were fabricated from poly(ester urethane) urea (PEUU) and the deposition…

ScaffoldMaterials scienceMechanical characterizationPolyestersBiomedical EngineeringBiochemistryArticleBiomaterialsTissue engineeringBending moduluUltimate tensile strengthMaterials TestingHumansComposite materialHeart valve tissue engineeringMolecular BiologyTissue EngineeringTissue ScaffoldsElectrospinningFlexural modulusStructural analysitechnology industry and agricultureFlexural rigidityGeneral MedicineElectrospinningElasticityPolyesterBending stiffnessHeart Valve ProsthesisBiotechnology
researchProduct

Polyaspartamide-polylactide electrospun scaffolds for potential topical release of Ibuprofen.

2012

In this work, the production and characterization of electrospun scaffolds of the copolymer α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-graft-polylactic acid (PHEA-g-PLA), proposed for a potential topical release of Ibuprofen (IBU), are reported. The drug has been chemically linked to PHEA-g-PLA and/or physically mixed to the copolymer before electrospinning. Degradation studies have been performed as a function of time in Dulbecco phosphate buffer solution pH 7.4, for both unloaded and drug-loaded scaffolds. By using an appropriate ratio between drug physically blended to the copolymer and drug-copolymer conjugate, a useful control of its release can be obtained. MTS assay on human dermal fi…

ScaffoldMaterials scienceMts assayCell SurvivalAdministration TopicalPolyestersBiomedical EngineeringBiocompatible MaterialsIbuprofenCell LineBiomaterialschemistry.chemical_compoundPolylactic acidPolymer chemistrymedicineCopolymerCell AdhesionHumansCell adhesionAspartic AcidDrug CarriersTissue ScaffoldsMetals and AlloysDermisAnalgesics Non-NarcoticFibroblastsIbuprofenElectrospinningChemical engineeringchemistryCeramics and Compositesmedicine.drugConjugateJournal of biomedical materials research. Part A
researchProduct

Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering.

2016

A novel bi-layered multiphasic scaffold (BLS) have been fabricated for the first time by combining melt mixing, compression molding and particulate leaching. One layer has been composed by polylactic acid (PLA) presenting pore size in the range of 90-110µm while the other layer has been made of polycaprolactone (PCL) with pores ranging from 5 to 40µm. The different chemo-physical properties of the two biopolymers combined with the tunable pore architecture permitted to realize monolithic functionally graded scaffolds engineered to be potentially used for interface tissues regenerations. BLS have been characterized from a morphological and a mechanical point of view. In particular, mechanica…

ScaffoldMaterials scienceParticulate leachingPolyestersBiomedical EngineeringCompression molding02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundMicePolylactic acidTissue engineeringChemical gradientMelt mixingSettore BIO/10 - BiochimicaElastic ModulusAnimalsComposite materialPorosityElastic modulusCells CulturedOsteoblastsTissue EngineeringTissue ScaffoldsInterface tissue engineeringPore size gradientSettore ING-IND/34 - Bioingegneria IndustrialeFunctionally graded scaffoldFibroblasts021001 nanoscience & nanotechnologyCoculture Techniques0104 chemical sciencesPolyesterSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsPolycaprolactoneNIH 3T3 Cells0210 nano-technologyPorosityJournal of the mechanical behavior of biomedical materials
researchProduct