Search results for "Polynomial"

showing 10 items of 566 documents

Varieties of algebras with pseudoinvolution: Codimensions, cocharacters and colengths

2022

Abstract Let A be a finitely generated superalgebra with pseudoinvolution ⁎ over an algebraically closed field F of characteristic zero. In this paper we develop a theory of polynomial identities for this kind of algebras . In particular, we shall consider three sequences that can be attached to Id ⁎ ( A ) , the T 2 ⁎ -ideal of identities of A: the sequence of ⁎-codimensions c n ⁎ ( A ) , the sequence of ⁎-cocharacter χ 〈 n 〉 ⁎ ( A ) and the ⁎-colength sequence l n ⁎ ( A ) . Our purpose is threefold. First we shall prove that the ⁎-codimension sequence is eventually non-decreasing, i.e., c n ⁎ ( A ) ≤ c n + 1 ⁎ ( A ) , for n large enough. Secondly, we study superalgebras with pseudoinvoluti…

ColengthsPolynomialSequencePure mathematicsMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraPseudoinvolutionsZero (complex analysis)Cocharacters; Colengths; Multiplicities; Polynomial identities; PseudoinvolutionsCocharactersSuperalgebraPolynomial identitiesSettore MAT/02 - AlgebraSection (category theory)Bounded functionIdeal (ring theory)Algebraically closed fieldMathematics
researchProduct

A Collective Binomial Learning Methodology

2013

In second-language learning, learners frequently have a poor environment for speaking and hearing the target language. Learning efficiency is thus limited. We propose a methodology involving the creation of temporary social structures. Collective interactions fed back among individuals and environment are constructed on a computer and practiced in a real world. A dynamic learning system which coherently ties together the practitioner’s design, the learner’s performance and the researcher’s theories is possible. Our results call for language learning structures to include adaptive spoken structures, in contrast with existing educational systems.

Collective behaviorBinomial (polynomial)Dynamic learningEconometricsMathematics educationContrast (statistics)Language acquisitionSocial structureSocial relationMathematicsEducational systems
researchProduct

Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems

1999

The tangential Hilbert 16th problem is to place an upper bound for the number of isolated ovals of algebraic level curves { H ( x , y ) = const } \{H(x,y)=\operatorname {const}\} over which the integral of a polynomial 1-form P ( x , y ) d x + Q ( x , y ) d y P(x,y)\,dx+Q(x,y)\,dy (the Abelian integral) may vanish, the answer to be given in terms of the degrees n = deg ⁡ H n=\deg H and d = max ( deg ⁡ P , deg ⁡ Q ) d=\max (\deg P,\deg Q) . We describe an algorithm producing this upper bound in the form of a primitive recursive (in fact, elementary) function of n n and d d for the particular case of hyperelliptic polynomials H ( x , y ) = y 2 + U ( x ) H(x,y)=y^2+U(x) under the additional as…

CombinatoricsAbelian integralPolynomialGeneral MathematicsLimit cycleSuperintegrable Hamiltonian systemAlgebraic curveAbelian groupAlgebraic numberMathematicsHamiltonian systemElectronic Research Announcements of the American Mathematical Society
researchProduct

Permutation properties and the fibonacci semigroup

1989

CombinatoricsAlgebra and Number TheoryFibonacci numberSemigroupPartial permutationFibonacci polynomialsBicyclic semigroupGeneralized permutation matrixPisano periodCyclic permutationMathematicsSemigroup Forum
researchProduct

On orderability of fibred knot groups

2003

It is known that knot groups are right-orderable, and that many of them are not bi-orderable. Here we show that certain bred knots in S 3 (or in a homology sphere) do have bi-orderable fundamental group. In particular, this holds for bred knots, such as 41, for which the Alexander polynomial has all roots real and positive. This is an application of the construction of orderings of groups, which are moreover invariant with respect to a certain automorphism.

CombinatoricsAlgebraHOMFLY polynomialKnot invariantGeneral MathematicsSkein relationAlexander polynomialKnot polynomialTricolorabilityMathematics::Geometric TopologyMathematicsKnot theoryFinite type invariantMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Transitive factorizations in the hyperoctahedral group

2008

The classical Hurwitz enumeration problem has a presentation in terms of transitive factor- izationsin the symmetric group. This presentationsuggestsageneralizationfromtypeAto otherfinite reflection groups and, in particular, to type B.W e study this generalization both from ac ombinatorial and a geometric point of view, with the prospect of providing am eans of understanding more of the structure of the moduli spaces of maps with an S2-symmetry. The type A case has been well studied and connects Hurwitz numbers to the moduli space of curves. W ec onjecture an analogous setting for the type B case that is studied here. 1I ntroduction Transitive factorizations of permutations into transposit…

CombinatoricsAlgebraic combinatoricsHurwitz quaternionHurwitz problemSymmetric groupGeneral MathematicsHurwitz's automorphisms theoremHurwitz matrixHurwitz polynomialSettore MAT/03 - GeometriaHyperoctahedral groupMathematicssymmetric group covering space
researchProduct

Boolean Functions of Low Polynomial Degree for Quantum Query Complexity Theory

2007

The degree of a polynomial representing (or approximating) a function f is a lower bound for the quantum query complexity of f. This observation has been a source of many lower bounds on quantum algorithms. It has been an open problem whether this lower bound is tight. This is why Boolean functions are needed with a high number of essential variables and a low polynomial degree. Unfortunately, it is a well-known problem to construct such functions. The best separation between these two complexity measures of a Boolean function was exhibited by Ambai- nis [5]. He constructed functions with polynomial degree M and number of variables Omega(M2). We improve such a separation to become exponenti…

CombinatoricsComplexity indexDiscrete mathematicsZero of a functionKarp–Lipton theoremHomogeneous polynomialBoolean expressionDegree of a polynomialBoolean functionMathematicsMatrix polynomial37th International Symposium on Multiple-Valued Logic (ISMVL'07)
researchProduct

Asymptotics for thenth-degree Laguerre polynomial evaluated atn

1992

We investigate the asymptotic behaviour of ? n (n),n?? where ? n (x) denotes the Laguerre polynomial of degreen. Our results give a partial answer to the conjecture ?? n (n)>1 forn>6, made in 1984 by van Iseghem. We also show the connection between this conjecture and the continued fraction approximants of $$6\sqrt {{3 \mathord{\left/ {\vphantom {3 \pi }} \right. \kern-\nulldelimiterspace} \pi }} $$ .

CombinatoricsComputational MathematicsConjectureIntegerDegree (graph theory)Applied MathematicsMathematical analysisLaguerre polynomialsConnection (algebraic framework)MathematicsNumerische Mathematik
researchProduct

The Linear Ordering Polytope

2010

So far we developed a general integer programming approach for solving the LOP. It was based on the canonical IP formulation with equations and 3-dicycle inequalities which was then strengthened by generating mod-k-inequalities as cutting planes. In this chapter we will add further ingredients by looking for problem- specific inequalities. To this end we will study the convex hull of feasible solutions of the LOP: the so-called linear ordering polytope.

CombinatoricsConvex hullLinear programmingBirkhoff polytopeComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONConvex polytopeCross-polytopeMathematicsofComputing_NUMERICALANALYSISUniform k 21 polytopeEhrhart polynomialVertex enumeration problemMathematics
researchProduct

On the number of prime divisors of the order of elliptic curves modulo p

2005

CombinatoricsDiscrete mathematicsAlgebra and Number TheorySato–Tate conjectureCounting points on elliptic curvesSchoof's algorithmTwists of curvesSupersingular elliptic curveLenstra elliptic curve factorizationPrime (order theory)Division polynomialsMathematicsActa Arithmetica
researchProduct