Search results for "Prefix"

showing 10 items of 57 documents

Algorithms for Computing Abelian Periods of Words

2012

Constantinescu and Ilie (Bulletin EATCS 89, 167--170, 2006) introduced the notion of an \emph{Abelian period} of a word. A word of length $n$ over an alphabet of size $\sigma$ can have $\Theta(n^{2})$ distinct Abelian periods. The Brute-Force algorithm computes all the Abelian periods of a word in time $O(n^2 \times \sigma)$ using $O(n \times \sigma)$ space. We present an off-line algorithm based on a $\sel$ function having the same worst-case theoretical complexity as the Brute-Force one, but outperforming it in practice. We then present on-line algorithms that also enable to compute all the Abelian periods of all the prefixes of $w$.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Abelian repetitionElementary abelian groupRank of an abelian groupCombinatoricsComputer Science - Data Structures and AlgorithmsFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsData Structures and Algorithms (cs.DS)Abelian groupOnline algorithmMathematicsArithmetic of abelian varietiesDiscrete mathematicsCombinatorics on wordsApplied MathematicsAbelian periodText algorithmWeak repetitionPrefixCombinatorics on wordsDesign of algorithmCombinatorics (math.CO)AlgorithmWord (computer architecture)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

The sequence of open and closed prefixes of a Sturmian word

2017

A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We are interested in the {\it oc-sequence} of a word, which is the binary sequence whose $n$-th element is $0$ if the prefix of length $n$ of the word is open, or $1$ if it is closed. We exhibit results showing that this sequence is deeply related to the combinatorial and periodic structure of a word. In the case of Sturmian words, we show that these are uniquely determined (up to renaming letters) by their oc-sequence. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binar…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian word closed wordComputer Science - Formal Languages and Automata Theory0102 computer and information sciences68R1501 natural sciencesPseudorandom binary sequenceCombinatorics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsMathematics - Combinatorics0101 mathematicsMathematicsSequenceClosed wordSettore INF/01 - InformaticaApplied Mathematics010102 general mathematicsSturmian wordSturmian wordPrefix010201 computation theory & mathematicsCombinatorics (math.CO)SuffixElement (category theory)Word (computer architecture)Maximal elementComputer Science - Discrete Mathematics
researchProduct

Enumeration and Structure of Trapezoidal Words

2013

Trapezoidal words are words having at most $n+1$ distinct factors of length $n$ for every $n\ge 0$. They therefore encompass finite Sturmian words. We give combinatorial characterizations of trapezoidal words and exhibit a formula for their enumeration. We then separate trapezoidal words into two disjoint classes: open and closed. A trapezoidal word is closed if it has a factor that occurs only as a prefix and as a suffix; otherwise it is open. We investigate open and closed trapezoidal words, in relation with their special factors. We prove that Sturmian palindromes are closed trapezoidal words and that a closed trapezoidal word is a Sturmian palindrome if and only if its longest repeated …

FOS: Computer and information sciencesFibonacci numberSpecial factorGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryEnumerative formulaDisjoint sets68R15Theoretical Computer ScienceFOS: MathematicsPalindromeMathematics - CombinatoricsClosed wordsFibonacci wordMathematicsDiscrete mathematicsClosed wordSequenceta111Sturmian wordPrefixCombinatorics on wordsRich wordtrapezoidal wordF.4.3Combinatorics (math.CO)SuffixWord (group theory)Computer Science(all)
researchProduct

A Classification of Trapezoidal Words

2011

Trapezoidal words are finite words having at most n+1 distinct factors of length n, for every n>=0. They encompass finite Sturmian words. We distinguish trapezoidal words into two disjoint subsets: open and closed trapezoidal words. A trapezoidal word is closed if its longest repeated prefix has exactly two occurrences in the word, the second one being a suffix of the word. Otherwise it is open. We show that open trapezoidal words are all primitive and that closed trapezoidal words are all Sturmian. We then show that trapezoidal palindromes are closed (and therefore Sturmian). This allows us to characterize the special factors of Sturmian palindromes. We end with several open problems.

FOS: Computer and information sciencesFormal Languages and Automata Theory (cs.FL)lcsh:Mathematicstrapezoidal words Sturmian words special factors palindromesPalindromeComputer Science - Formal Languages and Automata TheoryDisjoint setslcsh:QA1-939lcsh:QA75.5-76.95PrefixCombinatoricsF.4.3FOS: MathematicsMathematics - CombinatoricsCombinatorics (math.CO)lcsh:Electronic computers. Computer scienceSuffixWord (group theory)Mathematics
researchProduct

Generating a Gray code for prefix normal words in amortized polylogarithmic time per word

2020

A prefix normal word is a binary word with the property that no substring has more $1$s than the prefix of the same length. By proving that the set of prefix normal words is a bubble language, we can exhaustively list all prefix normal words of length $n$ as a combinatorial Gray code, where successive strings differ by at most two swaps or bit flips. This Gray code can be generated in $\Oh(\log^2 n)$ amortized time per word, while the best generation algorithm hitherto has $\Oh(n)$ running time per word. We also present a membership tester for prefix normal words, as well as a novel characterization of bubble languages.

FOS: Computer and information sciencesGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)Property (programming)combinatorial Gray codeComputer Science - Formal Languages and Automata TheoryData_CODINGANDINFORMATIONTHEORY0102 computer and information sciences02 engineering and technologyCharacterization (mathematics)01 natural sciencesTheoretical Computer ScienceCombinatoricsSet (abstract data type)Gray codeComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)MathematicsAmortized analysisSettore INF/01 - Informaticaprefix normal wordsSubstringcombinatorial generationPrefixjumbled pattern matching010201 computation theory & mathematics020201 artificial intelligence & image processingbinary languagesprefix normal words binary languages combinatorial Gray code combinatorial generation jumbled pattern matchingWord (computer architecture)Theoretical Computer Science
researchProduct

The rightmost equal-cost position problem.

2013

LZ77-based compression schemes compress the input text by replacing factors in the text with an encoded reference to a previous occurrence formed by the couple (length, offset). For a given factor, the smallest is the offset, the smallest is the resulting compression ratio. This is optimally achieved by using the rightmost occurrence of a factor in the previous text. Given a cost function, for instance the minimum number of bits used to represent an integer, we define the Rightmost Equal-Cost Position (REP) problem as the problem of finding one of the occurrences of a factor whose cost is equal to the cost of the rightmost one. We present the Multi-Layer Suffix Tree data structure that, for…

FOS: Computer and information sciencesOffset (computer science)Computer scienceSuffix treeComputer Science - Information Theorylaw.inventionCombinatoricslawLog-log plotComputer Science - Data Structures and AlgorithmsCompression schemetext compressiondictionary text compressionData Structures and Algorithms (cs.DS)LZ77 compressiondata compressionLossless compressionfull text indexSuffix Tree Data StructuresSettore INF/01 - InformaticaInformation Theory (cs.IT)Data structurePrefixCompression ratioCompression scheme; Constant time; Suffix Tree Data StructuresAlgorithmData compressionConstant time
researchProduct

On prefix normal words and prefix normal forms

2016

A $1$-prefix normal word is a binary word with the property that no factor has more $1$s than the prefix of the same length; a $0$-prefix normal word is defined analogously. These words arise in the context of indexed binary jumbled pattern matching, where the aim is to decide whether a word has a factor with a given number of $1$s and $0$s (a given Parikh vector). Each binary word has an associated set of Parikh vectors of the factors of the word. Using prefix normal words, we provide a characterization of the equivalence class of binary words having the same set of Parikh vectors of their factors. We prove that the language of prefix normal words is not context-free and is strictly contai…

FOS: Computer and information sciencesPrefix codePrefix normal wordPre-necklaceDiscrete Mathematics (cs.DM)General Computer ScienceFormal Languages and Automata Theory (cs.FL)Binary numberComputer Science - Formal Languages and Automata TheoryContext (language use)Binary languageLyndon words0102 computer and information sciences02 engineering and technologyPrefix grammarprefix normal formsKraft's inequalityCharacterization (mathematics)Lyndon word01 natural sciencesPrefix normal formenumerationTheoretical Computer ScienceFOS: Mathematics0202 electrical engineering electronic engineering information engineeringMathematics - CombinatoricsMathematicsDiscrete mathematicsprefix normal words prefix normal forms binary languages binary jumbled pattern matching pre-necklaces Lyndon words enumerationbinary jumbled pattern matchingSettore INF/01 - InformaticaComputer Science (all)pre-necklacesComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)prefix normal wordsPrefix010201 computation theory & mathematics020201 artificial intelligence & image processingCombinatorics (math.CO)binary languagesComputer Science::Formal Languages and Automata TheoryWord (group theory)Computer Science - Discrete MathematicsTheoretical Computer Science
researchProduct

Open and Closed Prefixes of Sturmian Words

2013

A word is closed if it contains a proper factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We deal with the sequence of open and closed prefixes of Sturmian words and prove that this sequence characterizes every finite or infinite Sturmian word up to isomorphisms of the alphabet. We then characterize the combinatorial structure of the sequence of open and closed prefixes of standard Sturmian words. We prove that every standard Sturmian word, after swapping its first letter, can be written as an infinite product of squares of reversed standard words.

FOS: Computer and information sciencesSequenceFibonacci numberDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian wordStructure (category theory)Sturmian wordInfinite productComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Computer Science - Formal Languages and Automata Theory68R15CombinatoricsPrefixComputer Science::Discrete MathematicsCombinatorics on words Sturmian wordFOS: MathematicsMathematics - CombinatoricsClosed wordsCombinatorics (math.CO)SuffixWord (group theory)Computer Science::Formal Languages and Automata TheoryMathematicsComputer Science - Discrete Mathematics
researchProduct

Binary jumbled string matching for highly run-length compressible texts

2012

The Binary Jumbled String Matching problem is defined as: Given a string $s$ over $\{a,b\}$ of length $n$ and a query $(x,y)$, with $x,y$ non-negative integers, decide whether $s$ has a substring $t$ with exactly $x$ $a$'s and $y$ $b$'s. Previous solutions created an index of size O(n) in a pre-processing step, which was then used to answer queries in constant time. The fastest algorithms for construction of this index have running time $O(n^2/\log n)$ [Burcsi et al., FUN 2010; Moosa and Rahman, IPL 2010], or $O(n^2/\log^2 n)$ in the word-RAM model [Moosa and Rahman, JDA 2012]. We propose an index constructed directly from the run-length encoding of $s$. The construction time of our index i…

FOS: Computer and information sciencesString algorithmsStructure (category theory)Binary numberG.2.1Data_CODINGANDINFORMATIONTHEORY0102 computer and information sciences02 engineering and technologyString searching algorithm01 natural sciencesComputer Science - Information RetrievalTheoretical Computer ScienceCombinatoricsdata structuresSimple (abstract algebra)Computer Science - Data Structures and AlgorithmsString algorithms; jumbled pattern matching; prefix normal form; data structures0202 electrical engineering electronic engineering information engineeringParikh vectorData Structures and Algorithms (cs.DS)Run-length encodingMathematics68W32 68P05 68P20String (computer science)prefix normal formSubstringComputer Science Applicationsjumbled pattern matching010201 computation theory & mathematicsData structureSignal ProcessingRun-length encoding020201 artificial intelligence & image processingConstant (mathematics)Information Retrieval (cs.IR)Information SystemsInformation Processing Letters
researchProduct

Wireless OFDM-OQAM with a small number of subcarriers

2008

Orthogonal frequency division multiplexing based on offset quadrature amplitude modulation (OFDM-OQAM) is a multicarrier signaling technique which trades off robustness for spectral efficiency when compared to conventional OFDM with a cyclic prefix. In this paper, a novel matrix model for passband OFDM-OQAM signaling with a small number of subcarriers over a multipath frequency selective fading channel is presented. Specifically, in OFDM-OQAM a frequency selective channel is divided into many smaller but still frequency selective overlapping channels, so approximating the frequency response of a subchannel by the channel frequency response sampled at the subcarrier frequency may be inadequa…

Frequency responseComputer scienceOrthogonal frequency-division multiplexingbusiness.industrySpectral efficiencyTopologySubcarrierCyclic prefixControl theoryBasebandWirelessFadingbusinessPassbandMultipath propagationQuadrature amplitude modulationCommunication channel
researchProduct