Search results for "Probability Distribution"
showing 10 items of 263 documents
Exploring regression structure with graphics
1993
We investigate the extent to which it may be possible to carry out a regression analysis using graphics alone, an idea that we refer to asgraphical regression. The limitations of this idea are explored. It is shown that graphical regression is theoretically possible with essentially no constraints on the conditional distribution of the response given the predictors, but with some conditions on marginal distribution of the predictors. Dimension reduction subspaces and added variable plots play a central role in the development. The possibility of useful methodology is explored through two examples.
On decoupling in Banach spaces
2021
AbstractWe consider decoupling inequalities for random variables taking values in a Banach space X. We restrict the class of distributions that appear as conditional distributions while decoupling and show that each adapted process can be approximated by a Haar-type expansion in which only the pre-specified conditional distributions appear. Moreover, we show that in our framework a progressive enlargement of the underlying filtration does not affect the decoupling properties (in particular, it does not affect the constants involved). As a special case, we deal with one-sided moment inequalities for decoupled dyadic (i.e., Paley–Walsh) martingales and show that Burkholder–Davis–Gundy-type in…
Geometric Entropies of Mixing (EOM)
2005
Trigonometric and trigonometric-algebraic entropies are introduced. Regularity increases the entropy and the maximal entropy is shown to result when a regular $n$-gon is inscribed in a circle. A regular $n$-gon circumscribing a circle gives the largest entropy reduction, or the smallest change in entropy from the state of maximum entropy which occurs in the asymptotic infinite $n$ limit. EOM are shown to correspond to minimum perimeter and maximum area in the theory of convex bodies, and can be used in the prediction of new inequalities for convex sets. These expressions are shown to be related to the phase functions obtained from the WKB approximation for Bessel and Hermite functions.
Parameter orthogonality and conditional profile likelihood: the exponential power function case
1999
Orthogonality, according to Fisher’s metrics, between the parameters of a probability density function, as well as giving rise to a series of statistical implications, makes it possible to express a function of conditional profile likelihood with better properties than the ordinary profile likelihood function. In the present paper the parameters of exponential power function are made orthogonal and the conditional profile likelihood of the shape parameter p is determined in order to study its properties with reference to p estimation. Moreover, by means of a simulation plan, a comparison is made between the estimates of p obtained from the conditional profile log-likelihood and those obtain…
On the relationship between the reversed hazard rate and elasticity
2012
Despite hazard and reversed hazard rates sharing a number of similar aspects, reversed hazard functions are far less frequently used. Understanding their meaning is not a simple task. The aim of this paper is to expand the usefulness of the reversed hazard function by relating it to other well-known concepts broadly used in economics: (linear or cumulative) rates of increase and elasticity. This will make it possible (i) to improve our understanding of the consequences of using a particular distribution and, in certain cases, (ii) to introduce our hypotheses and knowledge about the random process in a more meaningful and intuitive way, thus providing a means to achieving distributions that …
A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian…
2008
The present paper discusses the use of modified Lotka-Volterra equations in order to stochastically simulate the behaviour of Listeria monocytogenes and Lactic Acid Bacteria (LAB) during the fermentation period (168 h) of a typical Sicilian salami. For this purpose, the differential equation system is set considering T, pH and aw as stochastic variables. Each of them is governed by dynamics that involve a deterministic linear decrease as a function of the time t and an "additive noise" term which instantaneously mimics the fluctuations of T, pH and aw. The choice of a suitable parameter accounting for the interaction of LAB on L. monocytogenes as well as the introduction of appropriate nois…
A non-homogeneous Poisson based model for daily rainfall data
2007
In this paper we report some results of the application of a new stochastic model applied to rainfall daily data. The Poisson models, characterized only by the expected rate of events (impulse occurrences, that is the mean number of impulses per unit time) and the assigned probability distribution of the phenomenon magnitude, do not take into consideration the datum regarding the duration of the occurrences, that is fundamental from a hydrological point of view. In order to describe the phenomenon in a way more adherent to its physical nature, we propose a new model simple and manageable. This model takes into account another random variable, representing the duration of the rainfall due to…
Exact stationary solution for a class of non-linear systems driven by a non-normal delta-correlated process
1995
In this paper the exact stationary solution in terms of probability density function for a restricted class of non-linear systems under both external and parametric non-normal delta-correlated processes is presented. This class has been obtained by imposing a given probability distribution and finding the corresponding dynamical system which satisfies the modified Fokker-Planck equation. The effectiveness of the results has been verified by means of a Monte Carlo simulation.
Noise Induced Phenomena in the Dynamics of Two Competing Species
2015
Noise through its interaction with the nonlinearity of the living systems can give rise to counter-intuitive phenomena. In this paper we shortly review noise induced effects in different ecosystems, in which two populations compete for the same resources. We also present new results on spatial patterns of two populations, while modeling real distributions of anchovies and sardines. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. We find noise induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise …
THE KEY ROLE OF LIQUIDITY FLUCTUATIONS IN DETERMINING LARGE PRICE CHANGES
2005
Recent empirical analyses have shown that liquidity fluctuations are important for understanding large price changes of financial assets. These liquidity fluctuations are quantified by gaps in the order book, corresponding to blocks of adjacent price levels containing no quotes. Here we study the statistical properties of the state of the limit order book for 16 stocks traded at the London Stock Exchange (LSE). We show that the time series of the first three gaps are characterized by fat tails in the probability distribution and are described by long memory processes.