Search results for "Probability and Uncertainty"

showing 10 items of 578 documents

Sparse and Smooth: improved guarantees for Spectral Clustering in the Dynamic Stochastic Block Model

2020

In this paper, we analyse classical variants of the Spectral Clustering (SC) algorithm in the Dynamic Stochastic Block Model (DSBM). Existing results show that, in the relatively sparse case where the expected degree grows logarithmically with the number of nodes, guarantees in the static case can be extended to the dynamic case and yield improved error bounds when the DSBM is sufficiently smooth in time, that is, the communities do not change too much between two time steps. We improve over these results by drawing a new link between the sparsity and the smoothness of the DSBM: the more regular the DSBM is, the more sparse it can be, while still guaranteeing consistent recovery. In particu…

FOS: Computer and information sciencesStatistics and ProbabilityComputer Science - Machine Learning[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]Statistics - Machine LearningFOS: MathematicsMachine Learning (stat.ML)Mathematics - Statistics TheoryStatistics Theory (math.ST)Statistics Probability and Uncertainty[STAT.ML] Statistics [stat]/Machine Learning [stat.ML]Machine Learning (cs.LG)
researchProduct

Causal Effect Identification from Multiple Incomplete Data Sources: A General Search-Based Approach

2021

Causal effect identification considers whether an interventional probability distribution can be uniquely determined without parametric assumptions from measured source distributions and structural knowledge on the generating system. While complete graphical criteria and procedures exist for many identification problems, there are still challenging but important extensions that have not been considered in the literature. To tackle these new settings, we present a search algorithm directly over the rules of do-calculus. Due to generality of do-calculus, the search is capable of taking more advanced data-generating mechanisms into account along with an arbitrary type of both observational and…

FOS: Computer and information sciencesStatistics and ProbabilityComputer Science - Machine LearningcausalityComputer Science - Artificial IntelligenceHeuristic (computer science)Computer scienceeducationMachine Learning (stat.ML)transportabilitycomputer.software_genre01 natural sciencesMachine Learning (cs.LG)R-kielimissing dataQA76.75-76.765; QA273-280010104 statistics & probabilitydo-calculuscausality; do-calculus; selection bias; transportability; missing data; case-control design; meta-analysisStatistics - Machine LearningSearch algorithmselection bias0101 mathematicsParametric statisticspäättelymeta-analyysicase-control designhakualgoritmit113 Computer and information sciencesMissing datameta-analysisIdentification (information)Artificial Intelligence (cs.AI)Causal inferencekausaliteettiIdentifiabilityProbability distributionData miningStatistics Probability and UncertaintycomputerSoftwareJournal of Statistical Software
researchProduct

Conditional particle filters with diffuse initial distributions

2020

Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which are common in statistical applications. We propose a simple but generally applicable auxiliary variable method, which can be used together with the CPF in order to perform efficient inference with diffuse initial distributions. The method only requires simulatable Markov transitions that are reversible with respect to the initial distribution, which can be improper. We focus in particular on random-walk type transitions which are reversible with respect to a uniform init…

FOS: Computer and information sciencesStatistics and ProbabilityComputer scienceGaussianBayesian inferenceMarkovin ketjut02 engineering and technology01 natural sciencesStatistics - ComputationArticleTheoretical Computer ScienceMethodology (stat.ME)010104 statistics & probabilitysymbols.namesakeAdaptive Markov chain Monte Carlotilastotiede0202 electrical engineering electronic engineering information engineeringStatistical physics0101 mathematicsDiffuse initialisationHidden Markov modelComputation (stat.CO)Statistics - MethodologyState space modelHidden Markov modelbayesian inferenceMarkov chaindiffuse initialisationbayesilainen menetelmäconditional particle filtersmoothingmatemaattiset menetelmät020206 networking & telecommunicationsConditional particle filterCovariancecompartment modelRandom walkCompartment modelstate space modelComputational Theory and MathematicsAutoregressive modelsymbolsStatistics Probability and UncertaintyParticle filterSmoothingSmoothing
researchProduct

Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions

2021

We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretisation bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretised approximations of diffusions, such as the Euler--Maruyama scheme. Our approach is based on particle marginal Metropolis--Hastings, a particle filter, randomised multilevel Monte Carlo, and importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretisation as the number of Markov chain iterations increases. We give conver…

FOS: Computer and information sciencesStatistics and ProbabilityDiscretizationComputer scienceMarkovin ketjutInference010103 numerical & computational mathematicssequential Monte CarloBayesian inferenceStatistics - Computation01 natural sciencesMethodology (stat.ME)010104 statistics & probabilitysymbols.namesakediffuusio (fysikaaliset ilmiöt)FOS: MathematicsDiscrete Mathematics and Combinatorics0101 mathematicsHidden Markov modelComputation (stat.CO)Statistics - Methodologymatematiikkabayesilainen menetelmäApplied MathematicsProbability (math.PR)diffusionmatemaattiset menetelmätMarkov chain Monte CarloMarkov chain Monte CarloMonte Carlo -menetelmätNoiseimportance sampling65C05 (primary) 60H35 65C35 65C40 (secondary)Modeling and Simulationsymbolsmatemaattiset mallitStatistics Probability and Uncertaintymultilevel Monte CarloParticle filterAlgorithmMathematics - ProbabilityImportance samplingSIAM/ASA Journal on Uncertainty Quantification
researchProduct

Local inhomogeneous weighted summary statistics for marked point processes

2023

We introduce a family of local inhomogeneous mark-weighted summary statistics, of order two and higher, for general marked point processes. Depending on how the involved weight function is specified, these summary statistics capture different kinds of local dependence structures. We first derive some basic properties and show how these new statistical tools can be used to construct most existing summary statistics for (marked) point processes. We then propose a local test of random labelling. This procedure allows us to identify points, and consequently regions, where the random labelling assumption does not hold, e.g.~when the (functional) marks are spatially dependent. Through a simulatio…

FOS: Computer and information sciencesStatistics and ProbabilityEarthquakefunctional marked point proceStatistics - Computationmark correlation functionMethodology (stat.ME)Discrete Mathematics and Combinatoricsrandom labellingStatistics Probability and UncertaintySettore SECS-S/01 - Statisticamarked K-functionComputation (stat.CO)Statistics - Methodologylocal envelope test
researchProduct

Estimation of causal effects with small data in the presence of trapdoor variables

2021

We consider the problem of estimating causal effects of interventions from observational data when well-known back-door and front-door adjustments are not applicable. We show that when an identifiable causal effect is subject to an implicit functional constraint that is not deducible from conditional independence relations, the estimator of the causal effect can exhibit bias in small samples. This bias is related to variables that we call trapdoor variables. We use simulated data to study different strategies to account for trapdoor variables and suggest how the related trapdoor bias might be minimized. The importance of trapdoor variables in causal effect estimation is illustrated with rea…

FOS: Computer and information sciencesStatistics and ProbabilityEconomics and EconometricsbiascausalityComputer scienceBayesian probabilityContext (language use)01 natural sciencesStatistics - ComputationMethodology (stat.ME)010104 statistics & probability0504 sociologyEconometrics0101 mathematicsComputation (stat.CO)Statistics - MethodologyestimointiEstimationSmall databayesilainen menetelmä05 social sciences050401 social sciences methodsEstimatorBayesian estimationidentifiabilityConstraint (information theory)functional constraintConditional independencekausaliteettiObservational studyStatistics Probability and UncertaintySocial Sciences (miscellaneous)
researchProduct

Bayesian inference for the extremal dependence

2016

A simple approach for modeling multivariate extremes is to consider the vector of component-wise maxima and their max-stable distributions. The extremal dependence can be inferred by estimating the angular measure or, alternatively, the Pickands dependence function. We propose a nonparametric Bayesian model that allows, in the bivariate case, the simultaneous estimation of both functional representations through the use of polynomials in the Bernstein form. The constraints required to provide a valid extremal dependence are addressed in a straightforward manner, by placing a prior on the coefficients of the Bernstein polynomials which gives probability one to the set of valid functions. The…

FOS: Computer and information sciencesStatistics and ProbabilityInferenceBernstein polynomialsBivariate analysisBayesian inference01 natural sciencesMethodology (stat.ME)Bayesian nonparametrics010104 statistics & probabilitysymbols.namesakeGeneralised extreme value distribution0502 economics and business62G07Applied mathematics62G05Degree of a polynomial0101 mathematicsStatistics - Methodology050205 econometrics MathematicsAngular measureMax-stable distributionGENERALISED EXTREME VALUE DISTRIBUTION EXTREMAL DEPENDENCE ANGULAR MEASURE MAX-STABLE DISTRIBUTION BERNSTEIN POLYNOMIALS BAYESIAN NONPARAMETRICS TRANS-DIMENSIONAL MCMC EXCHANGE RATEExchange rates05 social sciencesNonparametric statisticsMarkov chain Monte CarloBernstein polynomialGENERALISED EXTREME VALUE DISTRIBUTION; EXTREMAL DEPENDENCE; ANGULAR MEASURE; MAX-STABLE DISTRIBUTION; BERNSTEIN POLYNOMIALS; BAYESIAN NONPARAMETRICS; TRANS-DIMENSIONAL MCMC; EXCHANGE RATETrans-dimensional MCMCEXCHANGE RATEsymbolsStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaMaximaExtremal dependence62G32Electronic Journal of Statistics
researchProduct

Thresholding projection estimators in functional linear models

2008

We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squared error of prediction as well as estimators of the derivatives of the regression function. We prove these estimators are minimax and rates of convergence are given for some particular cases.

FOS: Computer and information sciencesStatistics and ProbabilityMathematical optimizationStatistics::TheoryMean squared error of predictionMean squared errorMathematics - Statistics TheoryStatistics Theory (math.ST)Projection (linear algebra)Methodology (stat.ME)FOS: MathematicsApplied mathematicsStatistics - MethodologyMathematicsLinear inverse problemNumerical AnalysisLinear modelEstimatorRegression analysisMinimaxSobolev spaceThresholdingOptimal rate of convergenceDerivatives estimationRate of convergenceHilbert scaleStatistics Probability and UncertaintyGalerkin methodJournal of Multivariate Analysis
researchProduct

Isotonic regression for metallic microstructure data: estimation and testing under order restrictions

2021

Investigating the main determinants of the mechanical performance of metals is not a simple task. Already known physical inspired qualitative relations between 2D microstructure characteristics and 3D mechanical properties can act as the starting point of the investigation. Isotonic regression allows to take into account ordering relations and leads to more efficient and accurate results when the underlying assumptions actually hold. The main goal in this paper is to test order relations in a model inspired by a materials science application. The statistical estimation procedure is described considering three different scenarios according to the knowledge of the variances: known variance ra…

FOS: Computer and information sciencesStatistics and ProbabilityMathematical optimizationgeometrically necessary dislocationsComputer science0211 other engineering and technologiesG.302 engineering and technology01 natural sciencesStatistics - ApplicationsMethodology (stat.ME)010104 statistics & probabilitySimple (abstract algebra)Isotonic regressionApplications (stat.AP)0101 mathematicsbootstraporder restrictionsStatistics - Methodology021103 operations researchlikelihood ratio testMicrostructurealternating iterative methodOrder (business)Geometrically necessary dislocationsLikelihood-ratio testStatistics Probability and UncertaintyIsotonic regression62F30 62F03 97K80
researchProduct

Bayesian Checking of the Second Levels of Hierarchical Models

2007

Hierarchical models are increasingly used in many applications. Along with this increased use comes a desire to investigate whether the model is compatible with the observed data. Bayesian methods are well suited to eliminate the many (nuisance) parameters in these complicated models; in this paper we investigate Bayesian methods for model checking. Since we contemplate model checking as a preliminary, exploratory analysis, we concentrate on objective Bayesian methods in which careful specification of an informative prior distribution is avoided. Numerous examples are given and different proposals are investigated and critically compared.

FOS: Computer and information sciencesStatistics and ProbabilityModel checkingModel checkingComputer scienceconflictGeneral MathematicsBayesian probabilityMachine learningcomputer.software_genreMethodology (stat.ME)partial posterior predictivePrior probabilityStatistics - Methodologybusiness.industrymodel criticismProbability and statisticsExploratory analysisobjective Bayesian methodsempirical-Bayesposterior predictivep-valuesArtificial intelligenceStatistics Probability and Uncertaintybusinesscomputer
researchProduct