Search results for "Probability."
showing 10 items of 3396 documents
Transition densities for strongly degenerate time inhomogeneous random models
2013
In this paper we study the existence of densities for strongly degenerate stochastic differential equations whose coefficients depend on time and are not globally Lipschitz. In these models neither local ellipticity nor the strong H\"ormander condition is satisfied. In this general setting we show that continuous transition densities indeed exist in all neighborhoods of points where the weak H\"ormander condition is satisfied. We also exhibit regions where these densities remain positive. We then apply these results to stochastic Hodgkin-Huxley models as a first step towards the study of ergodicity properties of such systems.
Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon
2023
This article studies large and local large deviations for sums of i.i.d. real-valued random variables in the domain of attraction of an $\alpha$-stable law, $\alpha\in (0,2]$, with emphasis on the case $\alpha=2$. There are two different scenarios: either the deviation is realised via a collective behaviour with all summands contributing to the deviation (a Gaussian scenario), or a single summand is atypically large and contributes to the deviation (a one-big-jump scenario). Such results are known when $\alpha \in (0,2)$ (large deviations always follow a one big-jump scenario) or when the random variables admit a moment of order $2+\delta$ for some $\delta>0$. We extend these results, inclu…
Non-autonomous rough semilinear PDEs and the multiplicative Sewing Lemma
2021
We investigate existence, uniqueness and regularity for local solutions of rough parabolic equations with subcritical noise of the form $du_t- L_tu_tdt= N(u_t)dt + \sum_{i = 1}^dF_i(u_t)d\mathbf X^i_t$ where $(L_t)_{t\in[0,T]}$ is a time-dependent family of unbounded operators acting on some scale of Banach spaces, while $\mathbf X\equiv(X,\mathbb X)$ is a two-step (non-necessarily geometric) rough path of H\"older regularity $\gamma >1/3.$ Besides dealing with non-autonomous evolution equations, our results also allow for unbounded operations in the noise term (up to some critical loss of regularity depending on that of the rough path $\mathbf X$). As a technical tool, we introduce a versi…
On First-Passage-Time Densities for Certain Symmetric Markov Chains
2004
The spatial symmetry property of truncated birth-death processes studied in Di Crescenzo [6] is extended to a wider family of continuous-time Markov chains. We show that it yields simple expressions for first-passage-time densities and avoiding transition probabilities, and apply it to a bilateral birth-death process with jumps. It is finally proved that this symmetry property is preserved within the family of strongly similar Markov chains.
Rough McKean-Vlasov dynamics for robust ensemble Kalman filtering
2021
Motivated by the challenge of incorporating data into misspecified and multiscale dynamical models, we study a McKean-Vlasov equation that contains the data stream as a common driving rough path. This setting allows us to prove well-posedness as well as continuity with respect to the driver in an appropriate rough-path topology. The latter property is key in our subsequent development of a robust data assimilation methodology: We establish propagation of chaos for the associated interacting particle system, which in turn is suggestive of a numerical scheme that can be viewed as an extension of the ensemble Kalman filter to a rough-path framework. Finally, we discuss a data-driven method bas…
On the stability of some controlled Markov chains and its applications to stochastic approximation with Markovian dynamic
2015
We develop a practical approach to establish the stability, that is, the recurrence in a given set, of a large class of controlled Markov chains. These processes arise in various areas of applied science and encompass important numerical methods. We show in particular how individual Lyapunov functions and associated drift conditions for the parametrized family of Markov transition probabilities and the parameter update can be combined to form Lyapunov functions for the joint process, leading to the proof of the desired stability property. Of particular interest is the fact that the approach applies even in situations where the two components of the process present a time-scale separation, w…
Coupled conditional backward sampling particle filter
2020
The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, …
Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer
2019
AbstractA spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in ‘cancer state’ or in ‘non-cancer state’. The model assigns probabilities for the non-reversible transition from ‘non-cancer’ state to the ‘cancer state’ that depend on the states of the neighbouring nodes. The likelihood of transition further depends on the life burden intensity of the UV-rays that the skin is exposed to. The probabilistic nature of the process and the uncertainty in the input data is assessed by the use of Monte Carlo simulations. A good fit between experiments on mi…
From Feynman–Kac formulae to numerical stochastic homogenization in electrical impedance tomography
2016
In this paper, we use the theory of symmetric Dirichlet forms to derive Feynman–Kac formulae for the forward problem of electrical impedance tomography with possibly anisotropic, merely measurable conductivities corresponding to different electrode models on bounded Lipschitz domains. Subsequently, we employ these Feynman–Kac formulae to rigorously justify stochastic homogenization in the case of a stochastic boundary value problem arising from an inverse anomaly detection problem. Motivated by this theoretical result, we prove an estimate for the speed of convergence of the projected mean-square displacement of the underlying process which may serve as the theoretical foundation for the de…
"Table 7" of "Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt{s}$ = 8…
2016
Correlation matrix between the bins of the particle-level differential cross-section as a function of $p_{T,ptcl}$.