Search results for "Protein aggregation"
showing 10 items of 128 documents
Unlocked Concanavalin A Forms Amyloid-like Fibrils from Coagulation of Long-lived "Crinkled'' Intermediates
2013
Understanding the early events during amyloid aggregation processes is crucial to single out the involved molecular mechanisms and for designing ad hoc strategies to prevent and reverse amyloidogenic disorders. Here, we show that, in conditions in which the protein is positively charged and its conformational flexibility is enhanced, Concanavalin A leads to fibril formation via a non-conventional aggregation pathway. Using a combination of light scattering, circular dichroism, small angle X-ray scattering, intrinsic (Tryptophan) and extrinsic (ANS) fluorescence and confocal and 2-photon fluorescence microscopy we characterize the aggregation process as a function of the temperature. We high…
Garcinoic acid prevents β-amyloid (Aβ) deposition in the mouse brain
2020
Garcinoic acid (GA or δ-T3-13'COOH), is a natural vitamin E metabolite that has preliminarily been identified as a modulator of nuclear receptors involved in β-amyloid (Aβ) metabolism and progression of Alzheimer's disease (AD). In this study, we investigated GA's effects on Aβ oligomer formation and deposition. Specifically, we compared them with those of other vitamin E analogs and the soy isoflavone genistein, a natural agonist of peroxisome proliferator–activated receptor γ (PPARγ) that has therapeutic potential for managing AD. GA significantly reduced Aβ aggregation and accumulation in mouse cortical astrocytes. Similarly to genistein, GA up-regulated PPARγ expression and apolipoprote…
The Anti-amyloid Compound DO1 Decreases Plaque Pathology and Neuroinflammation-Related Expression Changes in 5xFAD Transgenic Mice
2018
Self-propagating amyloid-β (Aβ) aggregates or seeds possibly drive pathogenesis of Alzheimer's disease (AD). Small molecules targeting such structures might act therapeutically in vivo. Here, a fluorescence polarization assay was established that enables the detection of compound effects on both seeded and spontaneous Aβ42 aggregation. In a focused screen of anti-amyloid compounds, we identified Disperse Orange 1 (DO1) ([4-((4-nitrophenyl)diazenyl)-N-phenylaniline]), a small molecule that potently delays both seeded and non-seeded Aβ42 polymerization at substoichiometric concentrations. Mechanistic studies revealed that DO1 disrupts preformed fibrillar assemblies of synthetic Aβ42 peptides …
A protein quality control pathway regulated by linear ubiquitination.
2019
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence doma…
Formulation, process conditions, and biological evaluation of dairy mixed gels containing fava bean and milk proteins: Effect on protein retention in…
2019
International audience; Food formulation and process conditions can indirectly influence AA digestibility and bioavailability. Here we investigated the effects of formulation and process conditions used in the manufacture of novel blended dairy gels (called "mixed gels" here) containing fava bean (Vicia faba) globular proteins on both protein composition and metabolism when given to young rats. Three mixed dairy gels containing casein micelles and fava bean proteins were produced either by chemical acidification (A) with glucono-δ-lactone (GDL) or by lactic acid fermentation. Fermented gels containing casein and fava bean proteins were produced without (F) or with (FW) whey proteins. The AA…
The route to protein aggregate superstructures: Particulates and amyloid-like spherulites.
2015
AbstractDepending on external conditions, native proteins may change their structure and undergo different association routes leading to a large scale polymorphism of the aggregates. This feature has been widely observed but is not fully understood yet. This review focuses on morphologies, physico-chemical properties and mechanisms of formation of amyloid structures and protein superstructures. In particular, the main focus will be on protein particulates and amyloid-like spherulites, briefly summarizing possible experimental methods of analysis. Moreover, we will highlight the role of protein conformational changes and dominant forces in driving association together with their connection w…
Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin.
2004
Aggregation of proteins appears to be associated most often with conformational and structural changes that lead to exposure of some apolar residues. Depending on the native structure of the protein in exam, aggregation is a process that involves different mechanisms, whose time of occurrence and interplay can depend upon temperature. To single out information about the multistages of the aggregation pathway, here we investigate the thermally induced conformational and structural changes of the beta-lactoglobulin (BLG). The experimental approach consists in studying steady-state fluorescence spectra of intrinsic chromophores, two tryptophans, and Anylino-Naphthalene-Sulfonate dye (ANS) mole…
Molecular topology as novel strategy for discovery of drugs with aβ lowering and anti-aggregation dual activities for Alzheimer's disease.
2014
Background and Purpose: In this study, we demonstrate the use of Molecular topology (MT) in an Alzheimer's disease (AD) drug discovery program. MT uses and expands upon the principles governing the molecular connectivity theory of numerically characterizing molecular structures, in the present case, active anti-AD drugs/agents, using topological descriptors to build models. Topological characterization has been shown to embody sufficient molecular information to provide strong correlation to therapeutic efficacy. Experimental Approach: We used MT to include multiple bioactive properties that allows for the identification of multifunctional single agent compounds, in this case, the dual func…
Irreversible gelation of thermally unfolded proteins:structural and mechanical properties of lysozyme aggregates
2010
The formation of protein aggregates is important in many fields of life science and technology. The morphological and mechanical properties of protein solutions depend upon the molecular conformation and thermodynamic and environmental conditions. Non-native or unfolded proteins may be kinetically trapped into irreversible aggregates and undergo precipitation or gelation. Here, we study the thermal aggregation of lysozyme in neutral solutions. We characterise the irreversible unfolding of lysozyme by differential scanning calorimetry. The structural properties of aggregates and their mechanisms of formation with the eventual gelation are studied at high temperature by spectroscopic, rheolog…
On the molecular structure of human neuroserpin polymers
2012
The polymerization of serpins is at the root of a large class of diseases; the molecular structure of serpin polymers has been recently debated. In this work, we study the polymerization kinetics of human neuroserpin by Fourier Transform Infra Red spectroscopy and by time-lapse Size Exclusion Chromatography. First, we show that two distinct neuroserpin polymers, formed at 45 and 85°C, display the same isosbestic points in the Amide I' band, and therefore share common secondary structure features. We also find a concentration independent polymerization rate at 45°C suggesting that the polymerization rate-limiting step is the formation of an activated monomeric species. The polymer structures…