Search results for "Protein structure"

showing 10 items of 757 documents

New insights into the mechanism of action of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives endowed with anticancer potential

2018

Due to the scarce biological profile, the pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one scaffold (PBT) has been recently explored as promising core for potential anticancer candidates. Several suitably decorated derivatives (PBTs) exhibited antiproliferative activity in the low-micromolar range associated with apoptosis induction and cell cycle arrest on S phase. Herein, we selected the most active derivatives and submitted them to further biological explorations to deepen the mechanism of action. At first, a DNA targeting is approached by means of flow Linear Dichroism experiments so as to evaluate how small planar molecules might interact with DNA, including the interference with the catal…

0301 basic medicineCell cycle checkpointPyrazolo[1TetrazolesBiochemistrychemistry.chemical_compound0302 clinical medicineSalmonAntiproliferative; DNA-interacting; Intercalation; Linear dichroism; Molecular docking; Pyrazolo[12-a]benzo[1234]tetrazin-3-one; Topoisomerase II; Biochemistry; Molecular MedicineDrug DiscoveryDNA-interactingBase PairingADMEbiologyIntercalating AgentsMolecular Docking Simulation030220 oncology & carcinogenesisMolecular Medicinemedicine.symptomtopoisomerase II3StereochemistryIn silico2Antineoplastic Agentslinear dichroism03 medical and health sciencesantiproliferativeintercalationmedicineAnimalsHumansDNA Cleavage2-a]benzo[1Pharmacology4]tetrazin-3-oneBinding SitesTopoisomeraseOrganic ChemistryDNAmolecular dockingSettore CHIM/08 - Chimica FarmaceuticaChemical spaceProtein Structure TertiaryDNA Topoisomerases Type II030104 developmental biologyMechanism of actionchemistryCatalytic cyclebiology.proteinpyrazolo[12-a]benzo[1234]tetrazin-3-oneDNAChemical Biology & Drug Design
researchProduct

Design, synthesis, and biological evaluation of a new class of benzo[b]furan derivatives as antiproliferative agents, with in silico predicted antitu…

2018

A new series of 3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furans were synthesized and screened as antitumor agents. As a general trend, tested compounds showed concentration-dependent antiproliferative activity against HeLa and MCF-7 cancer cell lines, exhibiting GI50 values in the low micromolar range. In most cases, insertion of a methyl substituent on the imidazole moiety improved the antiproliferative activity. Therefore, methyl-imidazolyl-benzo[b]furans compounds were tested in cell cycle perturbation experiments, producing cell cycle arrest with proapoptotic effects. Their core similarity to known colchicine binding site binders led us to further study the structure featur…

0301 basic medicineCell cycle checkpointinduced fit docking studieantitubulin agents01 natural sciencesBiochemistryHeLa and MCF-7 cell linesHeLachemistry.chemical_compoundTubulinFuranDrug DiscoveryImidazoleMoietybiologyHeLa and MCF-7 cell lineG2/M phaseTubulin ModulatorsMolecular Docking SimulationAntiproliferative AgentsMCF-7 CellsMolecular MedicineVLAK protocolantitubulin agentStereochemistryIn silicoSubstituent3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furansAntineoplastic Agentsinduced fit docking studiesantitumor agents03 medical and health sciencesHumanscolchicine binding siteBenzofuransCell ProliferationPharmacologyBinding Sites010405 organic chemistryOrganic ChemistryCell Cycle Checkpoints3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furanbiology.organism_classification0104 chemical sciencesProtein Structure Tertiary030104 developmental biologychemistryantitumor agentDrug DesignColchicineHeLa Cells
researchProduct

A community resource of experimental data for NMR / X-ray crystal structure pairs

2015

We have developed an online NMR / X-ray Structure Pair Data Repository. The NIGMS Protein Structure Initiative (PSI) has provided many valuable reagents, 3D structures, and technologies for structural biology. The Northeast Structural Genomics Consortium was one of several PSI centers. NESG used both X-ray crystallography and NMR spectroscopy for protein structure determination. A key goal of the PSI was to provide experimental structures for at least one representative of each of hundreds of targeted protein domain families. In some cases, structures for identical (or nearly identical) constructs were determined by both NMR and X-ray crystallography. NMR spectroscopy and X-ray diffraction …

0301 basic medicineChemistryNuclear magnetic resonance crystallographyNuclear magnetic resonance spectroscopyBiochemistryStructural genomics03 medical and health sciencesCrystallographyStructural bioinformatics030104 developmental biologyProtein structureStructural biologyTriple-resonance nuclear magnetic resonance spectroscopyMolecular BiologyProtein Structure InitiativeProtein Science
researchProduct

Organization into Higher Ordered Ring Structures Counteracts Membrane Binding of IM30, a Protein Associated with Inner Membranes in Chloroplasts and …

2016

The IM30 (inner membrane-associated protein of 30 kDa), also known as the Vipp1 (vesicle-inducing protein in plastids 1), has a crucial role in thylakoid membrane biogenesis and maintenance. Recent results suggest that the protein binds peripherally to membranes containing negatively charged lipids. However, although IM30 monomers interact and assemble into large oligomeric ring complexes with different numbers of monomers, it is still an open question whether ring formation is crucial for membrane interaction. Here we show that binding of IM30 rings to negatively charged phosphatidylglycerol membrane surfaces results in a higher ordered membrane state, both in the head group and in the inn…

0301 basic medicineChloroplastsMembrane lipids02 engineering and technologyBiologyBiochemistryThylakoids03 medical and health scienceschemistry.chemical_compoundMembrane LipidsBacterial ProteinsMembrane BiologyLipid bilayerProtein Structure QuaternaryMolecular BiologyPhosphatidylglycerolSynechocystisMembrane ProteinsBiological membranePhosphatidylglycerolsCell BiologySurface Plasmon Resonance021001 nanoscience & nanotechnologyKinetics030104 developmental biologyMembranechemistryBiochemistryMembrane proteinThylakoidMembrane biogenesisBiophysicsMutant ProteinsProtein Multimerization0210 nano-technologyProtein BindingThe Journal of biological chemistry
researchProduct

Proton Leakage Is Sensed by IM30 and Activates IM30-Triggered Membrane Fusion

2020

The inner membrane-associated protein of 30 kDa (IM30) is crucial for the development and maintenance of the thylakoid membrane system in chloroplasts and cyanobacteria. While its exact physiological function still is under debate, it has recently been suggested that IM30 has (at least) a dual function, and the protein is involved in stabilization of the thylakoid membrane as well as in Mg2+-dependent membrane fusion. IM30 binds to negatively charged membrane lipids, preferentially at stressed membrane regions where protons potentially leak out from the thylakoid lumen into the chloroplast stroma or the cyanobacterial cytoplasm, respectively. Here we show in vitro that IM30 membrane binding…

0301 basic medicineChloroplastsMembrane lipidsmembrane fusionMg2+CyanobacteriaThylakoidsCatalysisArticleVipp1Inorganic Chemistrylcsh:Chemistry03 medical and health sciencesMembrane Lipidsquartz crystal microbalanceProtein structureBacterial ProteinsPhysical and Theoretical ChemistryMg<sup>2+</sup>membrane bindingMolecular Biologylcsh:QH301-705.5SpectroscopyMembranes030102 biochemistry & molecular biologyChemistrypHOrganic ChemistrySynechocystisCD spectroscopyLipid bilayer fusionMembrane Proteinsfood and beveragesGeneral Medicinethylakoid membraneComputer Science ApplicationsChloroplastChloroplast stroma030104 developmental biologyMembranelcsh:Biology (General)lcsh:QD1-999CytoplasmThylakoidBiophysicsProtonsIM30Protein BindingInternational Journal of Molecular Sciences
researchProduct

Ethanol Controls the Self-Assembly and Mesoscopic Properties of Human Insulin Amyloid Spherulites.

2018

Protein self-assembly into amyloid fibrils or highly hierarchical superstructures is closely linked to neurodegenerative pathologies as Alzheimer's and Parkinson's diseases. Moreover, protein assemblies also emerged as building blocks for bioinspired nanostructured materials. In both the above mentioned fields, the main challenge is to control the growth and properties of the final protein structure. This relies on a more fundamental understanding of how interactions between proteins can determine structures and functions of biomolecular aggregates. Here, we identify a striking effect of the hydration of the single human insulin molecule and solvent properties in controlling hydrophobicity/…

0301 basic medicineCircular dichroismAmyloidAmyloidInsulins02 engineering and technologyMicroscopy Atomic Force03 medical and health scienceschemistry.chemical_compoundProtein structureMicroscopy Electron TransmissionScattering Small AngleSpectroscopy Fourier Transform InfraredMaterials ChemistryMoleculeHumansPhysical and Theoretical ChemistryAMYLOID SPECTROSOPY FLUORECENCE MICROSCOPYMesoscopic physicsEthanolMicroscopy ConfocalEthanolChemistryCircular DichroismOptical Imaging021001 nanoscience & nanotechnologySurfaces Coatings and FilmsNeutron Diffraction030104 developmental biologySpheruliteBiophysics0210 nano-technologySuperstructure (condensed matter)Hydrophobic and Hydrophilic Interactions
researchProduct

Cyclins B1, T1, and H differ in their molecular mode of interaction with cytomegalovirus protein kinase pUL97

2019

Human cytomegalovirus (HCMV) is a common β-herpesvirus causing life-long latent infections. HCMV replication interferes with cell cycle regulation in host cells because the HCMV-encoded cyclin-dependent kinase (CDK) ortholog pUL97 extensively phosphorylates the checkpoint regulator retinoblastoma protein. pUL97 also interacts with cyclins B1, T1, and H, and recent findings have strongly suggested that these interactions influence pUL97 substrate recognition. Interestingly, here we detected profound mechanistic differences among these pUL97-cyclin interactions. Our study revealed the following. (i) pUL97 interacts with cyclins B1 and H in a manner dependent on pUL97 activity and HCMV-specifi…

0301 basic medicineCyclin H[SDV]Life Sciences [q-bio]CytomegalovirusVirus ReplicationBiochemistry03 medical and health sciencesCyclin HViral ProteinsProtein DomainsCyclin-dependent kinaseHumansProtein phosphorylationCyclin B1PhosphorylationCyclin B1Protein Structure QuaternaryMolecular BiologyComputingMilieux_MISCELLANEOUSCyclin030102 biochemistry & molecular biologybiologyChemistryCyclin TRetinoblastoma proteinCell BiologyCell cycle3. Good healthCell biology030104 developmental biologyHEK293 Cellsbiology.proteinCyclin-dependent kinase 7
researchProduct

Direct observation of alpha-lactalbumin, adsorption and incorporation into lipid membrane and formation of lipid/protein hybrid structures

2019

The interaction between proteins and membranes is of great interest in biomedical and biotechnological research for its implication in many functional and dysfunctional processes. We present an experimental study on the interaction between model membranes and alpha-lactalbumin (alpha-La). alpha-La is widely studied for both its biological function and its anti-tumoral properties. We use advanced fluorescence microscopy and spectroscopy techniques to characterize alpha-La-membrane mechanisms of interaction and alpha-La-induced modifications of membranes when insertion of partially disordered regions of protein chains in the lipid bilayer is favored. Moreover, using fluorescence lifetime imag…

0301 basic medicineFluorescence-lifetime imaging microscopyProtein ConformationLipid BilayersBiophysics02 engineering and technologyBiochemistryMembrane Lipids03 medical and health sciencesProtein structureMembrane fluidityFluorescence microscopeAnimalsHumansLipid bilayerMolecular BiologyFluorescent DyesChemistryMembrane structure021001 nanoscience & nanotechnologyLipids2-PHOTON FLUORESCENCE MICROSCOPY; MOLTEN GLOBULE STATE; PARTIALLY FOLDED CONFORMATIONS; PROTEIN INTERACTIONS; CIRCULAR-DICHROISM; AMPHITROPIC PROTEINS; AMYLOID AGGREGATION; PHASOR APPROACH; OLEIC-ACID; LAURDANSpectrometry Fluorescence030104 developmental biologyMembranefluorescence FLIM Protein membrane interaction IDPLactalbuminBiophysicsCattleAdsorption0210 nano-technologyProtein adsorptionBiochimica et Biophysica Acta (BBA) - General Subjects
researchProduct

Photocage-initiated time-resolved solution X-ray scattering investigation of protein dimerization

2018

Photocaging in combination with X-ray solution scattering allows for the time-resolved study of protein dynamics in solution. This method is versatile and allows for accurate triggering of protein function.

0301 basic medicineKineticsBiochemistryQuantitative Biology::Subcellular Processes03 medical and health sciencesProtein structurebiophysicsstructural biologyGeneral Materials SciencephotocagingProtein Dimerization[PHYS]Physics [physics]Quantitative Biology::BiomoleculesCrystallographyChemistryScatteringQuantitative Biology::Molecular NetworksX-rayGeneral ChemistryCondensed Matter PhysicsbiophysicSmall moleculeX-ray solution scatteringResearch LettersSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)030104 developmental biologyStructural biologyQD901-999BiophysicsIUCrJ
researchProduct

19F NMR as a versatile tool to study membrane protein structure and dynamics.

2019

Abstract To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize meth…

0301 basic medicineMagnetic Resonance SpectroscopyChemistryCryo-electron microscopyProtein ConformationProtein dynamicsClinical BiochemistryMembrane ProteinsFluorine-19 NMRFluorine010402 general chemistryLigands01 natural sciencesBiochemistry0104 chemical sciences03 medical and health sciences030104 developmental biologyMembraneProtein structureMembrane proteinBiophysicsMolecular BiologyIon channelG protein-coupled receptorProtein BindingBiological chemistry
researchProduct