Search results for "Protein structure"

showing 10 items of 757 documents

Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.

2010

The protein structure-based virtual screening is typically accomplished using a molecular docking procedure. However, docking is a fairly slow process that is limited by the available scoring functions that cannot reliably distinguish between active and inactive ligands. In contrast, the ligand-based screening methods that are based on shape similarity identify the active ligands with high accuracy. Here, we show that the usage of negative images of the ligand-binding site, together with shape comparison tools, which are typically used in ligand-based virtual screening, improve the discrimination of active molecules from inactives. In contrast to ligand-based shape comparison, the negative …

Models MolecularVirtual screeningBinding SitesChemistryProtein ConformationGeneral Chemical EngineeringDrug Evaluation PreclinicalProteinsHydrogen BondingGeneral ChemistryComputational biologyLibrary and Information SciencesLigandsComputer Science ApplicationsUser-Computer InterfaceProtein structureBiochemistryROC CurveDocking (molecular)Computer GraphicsBinding siteDatabases ProteinSoftwareProtein BindingJournal of chemical information and modeling
researchProduct

Protein knot server: detection of knots in protein structures

2007

KNOTS (http://knots.mit.edu) is a web server that detects knots in protein structures. Several protein structures have been reported to contain intricate knots. The physiological role of knots and their effect on folding and evolution is an area of active research. The user submits a PDB id or uploads a 3D protein structure in PDB or mmCIF format. The current implementation of the server uses the Alexander polynomial to detect knots. The results of the analysis that are presented to the user are the location of the knot in the structure, the type of the knot and an interactive visualization of the knot. The results can also be downloaded and viewed offline. The server also maintains a regul…

Models MolecularWeb serverProtein FoldingTheoretical computer scienceProtein ConformationProtein Data Bank (RCSB PDB)MathematicsofComputing_NUMERICALANALYSISAlexander polynomialBiologyBioinformaticscomputer.software_genreUploadUser-Computer InterfaceKnot (unit)Protein structureTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONGeneticsComputer SimulationSurgical knotsDatabases ProteinInteractive visualizationComputingMethodologies_COMPUTERGRAPHICSInternetQuantitative Biology::BiomoleculesModels StatisticalComputational BiologyProteinsArticlesHaemophilus influenzaeMathematics::Geometric TopologycomputerAlgorithmsSoftwareMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

A Computational Study of the Protein-Ligand Interactions in CDK2 Inhibitors: Using Quantum Mechanics/Molecular Mechanics Interaction Energy as a Pred…

2006

ABSTRACT: We report a combined quantum mechanics/molecular mechanics (QM/MM) study to determine the protein-ligand interaction energy between CDK2 (cyclin-dependent kinase 2) and five inhibitors with the N2 -substituted 6-cyclohexylmethoxypurine scaffold. The computational results in this work show that the QM/MM interaction energy is strongly correlated to the biological activity and can be used as a predictor, at least within a family of substrates. A detailed analysis of the protein-ligand structures obtained from molecular dynamics simulations shows specific interactions within the active site that, in some cases, have not been reported before to our knowledge. The computed interaction …

Models MolecularWork (thermodynamics)Protein ConformationBiophysicsBiophysical Theory and ModelingMechanicsMolecular mechanicssymbols.namesakeMolecular dynamicsProtein structureSimulación por ComputadorDiseño de FármacosModelos QuímicosUnión ProteicaQuantum mechanicsModelos MolecularesConformación ProteicaComputer SimulationProtein Kinase InhibitorsBinding SitesbiologyChemistryCyclin-Dependent Kinase 2Active siteInteraction energyModels ChemicalPurinesDrug Designsymbolsbiology.proteinQuantum Theoryvan der Waals forceQuinasa 2 Dependiente de la CiclinaProtein BindingProtein ligandBiophysical Journal
researchProduct

Structure of the human filamin A actin-binding domain.

2009

Filamin A (FLNa) is a large dimeric protein that binds to actin filaments via its actin-binding domain (ABD). The crystal structure of this domain was solved at 3.2 A resolution. The domain adopts a closed conformation typical of other ABDs, but also forms a dimer both in crystallization conditions and in solution. The structure shows the localization of the residues mutated in patients with periventricular nodular heterotopia or otopalatodigital syndrome. Structural analysis predicts that mutations in both types of disorder may affect actin binding.

Models Molecularanimal structuresDimerFilaminsmacromolecular substancesFilaminCalponin homology domainCrystallography X-Raychemistry.chemical_compoundContractile ProteinsStructural BiologyFLNAHumansProtein Interaction Domains and MotifsActin-binding proteinProtein Structure QuaternaryActinbiologyMicrofilament ProteinsGeneral MedicineActinschemistryStructural Homology ProteinDomain (ring theory)Mutationbiology.proteinBiophysicsBinding domainProtein BindingActa crystallographica. Section D, Biological crystallography
researchProduct

NMR structure of hypothetical protein TA0938 from Thermoplasma acidophilum.

2007

Models MolecularbiologySequence Homology Amino AcidChemistryThermoplasmaArchaeal ProteinsArchaeal ProteinsHypothetical proteinThermoplasmaMolecular Sequence DataThermoplasma acidophilumSequence alignmentComputational biologybiology.organism_classificationBiochemistryStructural genomicsProtein Structure TertiaryStructural BiologyAmino Acid SequenceMolecular BiologyPeptide sequenceNuclear Magnetic Resonance BiomolecularSequence AlignmentProteins
researchProduct

A supramolecular system that strictly follows the binding mechanism of conformational selection

2020

Induced fit and conformational selection are two dominant binding mechanisms in biology. Although induced fit has been widely accepted by supramolecular chemists, conformational selection is rarely studied with synthetic systems. In the present research, we report a macrocyclic host whose binding mechanism is unambiguously assigned to conformational selection. The kinetic and thermodynamic aspects of this system are studied in great detail. It reveals that the kinetic equation commonly used for conformational selection is strictly followed here. In addition, two mathematical models are developed to determine the association constants of the same guest to the two host conformations. A “confo…

Models Molecularconformational selectionProtein ConformationScienceSupramolecular chemistrybiological systemsGeneral Physics and Astronomy010402 general chemistryLigands01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyBiophysical PhenomenaArticlesupramolecular chemistryMolecular recognitionProtein structureProtein DomainsComputational chemistryHeterocyclic Compoundsmechanisms in biologysupramolekulaarinen kemialcsh:ScienceSelection (genetic algorithm)Multidisciplinary010405 organic chemistryMechanism (biology)QProteinsGeneral ChemistryModels Theoretical0104 chemical sciencesKineticsPhysical chemistryKinetic equationsProteins metabolismsynthetic systemsThermodynamicslcsh:Qmolecular recognitionSupramolecular chemistryProtein Binding
researchProduct

Conformational investigation of α,β-dehydropeptides. X. Molecular and crystal structure of Ac-ΔAla-NMe2 compared with those of Ac-L-Ala-NMe2, Ac-DL-A…

2002

A series of three homologous dimethyldiamides Ac-DeltaAla-NMe2, Ac-L-Ala-NMe2 and Ac-DL-Ala-NMe2 has been synthesized and the structures of these amides determined from single-crystal X-ray diffraction data. To learn more about the conformational preferences of compounds studied, the fully relaxed (phi-psi) conformational energy maps in vacuo (AM1) of Ac-DeltaAla-NMe2 and Ac-L-Ala-NMe2 were obtained, and the calculated minima reoptimized with the DFT/B3LYP/6-31G** method. The crystal-state results have been compared with the literature data. Ac-DeltaAla-NMe2 and other alpha,beta-dehydroamino acid dimethyldiamides, Ac-DeltaXaa-NMe2 adopt the conservative conformation of the torsion angles ph…

Models Moleculardehydroalanine derivativeProtein ConformationStereochemistryαPeptidedimethylamidesCrystal structureX‐ray crystallographyCrystallography X-RayBiochemistryEndocrinologyProtein structureMoleculeBeta (finance)crystal and molecular structuresalanine derivativesβ‐dehydroamino acidstheoretical calculationschemistry.chemical_classificationAlanineamino acid amidesAmino acidCrystallographydehydropeptideschemistryX-ray crystallographyPeptidesRamachandran plotJOURNAL OF PEPTIDE RESEARCH
researchProduct

Crystal Structure of Perakine Reductase, Founding Member of a Novel Aldo-Keto Reductase (AKR) Subfamily That Undergoes Unique Conformational Changes …

2012

Perakine reductase (PR) catalyzes the NADPH-dependent reduction of the aldehyde perakine to yield the alcohol raucaffrinoline in the biosynthetic pathway of ajmaline in Rauvolfia, a key step in indole alkaloid biosynthesis. Sequence alignment shows that PR is the founder of the new AKR13D subfamily and is designated AKR13D1. The x-ray structure of methylated His(6)-PR was solved to 2.31 Å. However, the active site of PR was blocked by the connected parts of the neighbor symmetric molecule in the crystal. To break the interactions and obtain the enzyme-ligand complexes, the A213W mutant was generated. The atomic structure of His(6)-PR-A213W complex with NADPH was determined at 1.77 Å. Overal…

Models Molecularendocrine systemConformational changeProtein ConformationStereochemistryReductaseCrystallography X-Raycomplex mixturesMethylationBiochemistryProtein Structure SecondaryRauwolfiaEvolution MolecularProtein structurehemic and lymphatic diseasesheterocyclic compoundsMolecular BiologyAldo-keto reductaseCofactor bindingbiologyChemistryorganic chemicalsActive siteCell BiologyEnzyme structureAlcohol OxidoreductasesCrystallographyProtein Structure and Foldingbiology.proteinNADPH bindingSequence AlignmentNADPProtein BindingJournal of Biological Chemistry
researchProduct

Solution structure of aD,L-alternating oligonorleucine as a model of double-stranded antiparallel ?-helix

2002

Conformational characteristics of alternating D,L linear peptides are of particular interest because of their capacity to form transmembrane channels with different transport properties, as some natural antibiotics do. Single- and double-stranded beta-helical structures are common for alternating D,L peptides. The stability of the beta-helix depends on several structural factors, such as the backbone peptide length, type and position of side chains, and nature of terminal groups. The NMR and molecular dynamics solution conformation of a synthetic alternating D,L-oligopeptide with 15 norleucines (XVMe) has been used as a model to get insight in to the conformational features of double-strand…

Models Molecularenergy minimizationStereochemistryBiophysicsBeta helixStereoisomerismEnergy minimizationAntiparallel (biochemistry)BiochemistryProtein Structure SecondaryBiomaterialsMolecular dynamicsBiopolymerstwo-dimensional NMRProtein structureNorleucineSide chainDL-alternating peptNuclear Magnetic Resonance BiomolecularTransmembrane channelsChemistryOrganic ChemistryStereoisomerismGeneral Medicinemolecular dynamicsCrystallographybeta-helixOligopeptidesBiopolymers
researchProduct

Subunit organization of the abalone Haliotis tuberculata hemocyanin type 2 (HtH2), and the cDNA sequence encoding its functional units d, e, f, g and…

1999

We have developed a HPLC procedure to isolate the two different hemocyanin types (HtH1 and HtH2) of the European abalone Haliotis tuberculata. On the basis of limited proteolytic cleavage, two-dimensional immunoelectrophoresis, PAGE, N-terminal protein sequencing and cDNA sequencing, we have identified eight different 40-60-kDa functional units (FUs) in HtH2, termed HtH2-a to HtH2-h, and determined their linear arrangement within the elongated 400-kDa subunit. From a Haliotis cDNA library, we have isolated and sequenced a cDNA clone which encodes the five C-terminal FUs d, e, f, g and h of HtH2. As shown by multiple sequence alignments, defg of HtH2 correspond structurally to defg from Octo…

Models Molecularfood.ingredientDNA ComplementarySequence analysismedicine.medical_treatmentMolecular Sequence DataOctopodiformesMegathura crenulataBiochemistryEvolution MolecularfoodSequence Analysis ProteinComplementary DNAmedicineAnimalsHaliotisAmino Acid SequenceCloning MolecularProtein Structure QuaternaryPeptide sequenceImmunoelectrophoresisbiologySequence Homology Amino AcidcDNA libraryHelix SnailsProtein primary structureHemocyaninAnatomySequence Analysis DNAbiology.organism_classificationPeptide FragmentsBiochemistryMolluscaHemocyaninsEuropean journal of biochemistry
researchProduct